Plan of Lectures

Overview
Lecture duration ~ 1 hr
What are GWs?
Lecture duration ~ 2 hr
Gravity Tests with GWs
Lecture duration ~ 1.5 hr

Contact: lshao@pku.edu.cn

That would be one of the most fascinating things man could do, because it would tell you very much how the universe started.

- Rainer Weiss

Frontiers of GWs (I): Overview

Kavli Institute for Astronomy and Astrophysics

Lijing Shao (邵立晶)

KITS Summer School · 江苏溧阳

References

- M. Bailes, et al., Nature Rev. Phys. 3 (2021) 344 [DOI]
- A. Buonanno, Les Houches Lecture Notes (2006) [arXiv:0709.4682]
 - B. S. Sathyaprakash & B. F. Schutz, Living Rev. Rel. 12 (2009) 2 [arXiv:0903.0338]

GW150914: Binary Black Hole

September 14, 2015: Advanced Laser Interferometer

Gravitational-Wave Observatory (AdvLIGO)

LIGO/Virgo 2016

Lijing Shao (邵立晶)

GW170817: Binary Neutron Star

August 17, 2017: Advanced LIGO & Advanced Virgo

Figure Credit: M. Weiss

Lijing Shao (邵立晶)

GWs (I): Overview

GW170817: Binary Neutron Star

August 17, 2017: Advanced LIGO & Advanced Virgo

How do data tell stories?

LIGO/Virgo 2017

Lijing Shao (邵立晶)

GWs (I): Overview

GW200105 & GW200115: BH-NS Binaries

Lijing Shao (邵立晶)

Masses in the Stellar Graveyard

What is the next?

Lijing Shao (邵立晶)

GWs (I): Overview

GW Roadmap in the 2020s and 2030s

Past: BH & NS binaries by LIGO/Virgo

Opened a completely new window on the Universe!

Michelson Interferometer

- Quadrupolar $h \sim \delta L/L$
 - "+" and "×" modes

Bailes et al. 2021

Frequency: 10 Hz to 10 kHz

- Sources: $h \sim 10^{-21}$ and $\delta L \sim 10^{-18}$ m
 - Stellar-mass compact sources: BHs and NSs
 - Supernovae
 - Isolated NSs
- Detectors: can be effectively treated as in free fall (i.e. local inertial frame) in the direction of light propagation (Why?)

BUDGET

Noise budget

- Seimic noise: suspension system reduces by ~ 10¹² from 1 Hz to 10 Hz
- Thermal noise: thermally fluctuating stresses in the mirror coatings, substrates and suspensions
- Newtonian noise (or, dynamic gravity gradient): earth and atmospheric density perturbations
- Quantum noise: vacuum fluctuations of EM field (a.k.a. shot noise) and quantum radiation pressure noise (by photons' "kicks")
- Others: laser frequency and intensity noises, acoustically and seismically driven scattered light noises, sensor and actuator noises, stochastic forces from electrical and magnetic fields, energy deposited by energetic particles, etc.

Lijing Shao (邵立晶)

GWs (I): Overview

van Veggel 2018

Lijing Shao (邵立晶)

KITS Summer School 15 / 32

O2 Noise Curve

LIGO/Virgo 2019, PRX

Lijing Shao (邵立晶)

GWs (I): Overview

■ What have we learned? (BBHs)

- There is a population of BHs paired in orbitally bound binary systems that evolve through the emission of GWs and merge in less than a Hubble time
- **2** BHs of many tens and even hundreds of M_{\odot} exist in nature
- Properties of the observed BHs are entirely consistent with GR to within current measurement limits

- What have we learned? (BNSs)
- 1st demonstration of GW-EM multi-messenger astronomy
 - 1 1st definitive link between BNS mergers and short GRBs
 - 2 1st definitive observation of a kilonova
 - conclusive spectroscopic proof that BNS mergers produce heavy elements through *r*-process nucleosynthesis
 - **4** 1st demonstration that GWs travel at the **light speed** to better than $\sim 10^{15}$
 - an independent method for measuring the Hubble constant using detected GWs as a "standard siren"

3G Ground-based GW Detectors

3G Ground-based GW Detectors

Cosmic Explorer

Einstein Telescope

Credit: Evan Hall

Space-based Detectors

- LISA: 100 μHz–100 mHz, 2.5 × 10⁹ m
 - seed BHs @ z ~ 20
 - IMBHs and SMBHs: 10²−10⁷ M_☉
 - EMRIs: extreme mass ratio inspirals
 - Galactic binaries: mapping Milky Way

Space-based Detectors

LISA Pathfinder: 2015 – mid-2017

Armano et al. 2018, PRL

Pulsar Timing Arrays

■ **Pulsars**: magentized rotating NSs ⇒ lighthouse

TOAs: time of arrivals ($\sigma \lesssim 1 \, \mu s$)

Bailes et al. 2021

GWs (I): Overview

CMB Polarization

■ B-mode polarization: down to 10⁻¹⁸ Hz

remnant primordial GWs

Fundamental Physics

- Testing GR and modified theories of gravity
 - information loss, contradicting quantum, singularity, late-time acceleration => quantum gravity?
- Equation of state of ultra-high density matter
 - low-energy QCD ⇒ nonperturbative
 - phase transition?
- Exploring dark matter properties with GW observations
 - WIMPs, axions \Rightarrow superradiance, primordial BHs

Sathyaprakash & Schutz 2009; Bailes et al. 2021

Cosmology

Standard Sirens

Hubble constant

- dark energy equation of state

LIGO/Virgo + EM Groups 2017, Nature

Astrophysics

Formation and evolution of compact stars

- BH-BH, BH-NS, NS-NS, supernovae, etc.
- SMBH growth and evolution

Zhang, Shao, Zhu 2019

Multi-messenger

- Gravitational waves
 - γ-ray, X-ray
 - UV, optical, IR
 - Optical
- γ-ray bursts
- kilonovae
- afterglows

Abbott et al. 2017, ApJL

Lijing Shao (邵立晶)

GWs (I): Overview

KITS Summer School 30 / 32

Thanks!!! Any question?

Lijing Shao (邵立晶)

Thank you!

Statistics and an other states of

STATES OF THE OWNER OF THE OWNER

In Internet