Plan of Lectures

I Overview

L. Lecture duration $\sim 1 \mathrm{hr}$ I. What are GWs?

- Lecture duration ~ 2 hr
iil Gravity Tests with GWs
Lecture duration $\sim 1.5 \mathrm{hr}$.

Contact: Ishao@pku.edu.cn

That would be one of the most fascinating things man could do，because it would tell you very much how the universe started．
－Rainer Weíss

（6）北京大学
 PEKING UNIVERSITY
 Frontiers of GWs（II）：What are GWs？

Kavli Institute for Astronomy and Astrophysics

References

T．M．Maggiore，Gravitational Waves（Volume 1：Theory and Experiments）， Oxford University Press（2008）
國 M．Maggiore，Gravitational Waves（Volume 2：Astrophysics and Cosmology）， Oxford University Press（2018）
嗇 A．Buonanno，Les Houches Lecture Notes（2006）［arXiv：0709．4682］

Person of the Century

General Relativity

$$
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=\frac{8 \pi G}{c^{4}} T_{\mu \nu}
$$

＂Matter tells spacetime how to curve，and spacetime tells matter how to move．＂

Einstein Field Equations

Einstein Field Equations in a Nutshell

$$
G_{\mu \nu}=R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=\frac{8 \pi G}{c^{4}} T_{\mu \nu}
$$

where

$$
\begin{aligned}
R & =g^{\mu v} R_{\mu v} \\
R_{\mu v} & =g^{\rho \sigma} R_{\rho \mu \sigma v} \\
R^{v}{ }_{\mu \rho \sigma} & =\Gamma^{\nu}{ }_{\mu \sigma, \rho}-\Gamma^{\nu}{ }_{\mu \rho, \sigma}+\Gamma^{\nu}{ }_{\lambda \rho} \Gamma^{\lambda}{ }_{\mu \sigma}-\Gamma^{\nu}{ }_{\lambda \sigma} \Gamma^{\lambda}{ }_{\mu \rho} \\
\Gamma^{\mu}{ }_{\nu \rho} & =\frac{1}{2} g^{\mu \lambda}\left(g_{\lambda v, \rho}+g_{\lambda \rho, \nu}-g_{\nu \rho, \lambda}\right)
\end{aligned}
$$

Perturbation of $g_{\mu \nu}$

■ In order to study GWs，we assume there exists a coordinate system where the spacetime of interests has ${ }^{1}$

$$
g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}, \quad\left|h_{\mu \nu}\right| \ll 1
$$

■ Consider a Lorentz transformation $x^{\mu} \rightarrow \Lambda_{\nu}^{\mu} x^{\nu}$ ，we have

$$
g_{\mu \nu} \rightarrow g_{\mu \nu}^{\prime}\left(x^{\prime}\right)=\Lambda_{\mu}^{\rho} \Lambda_{\nu}^{\sigma} g_{\rho \sigma}=\eta_{\mu \nu}+\Lambda_{\mu}^{\rho} \Lambda_{\nu}^{\sigma} h_{\rho \sigma}(x)=\eta_{\mu v}+h_{\mu \nu}^{\prime}\left(x^{\prime}\right)
$$

where we have used $\Lambda^{\rho}{ }_{\mu} \Lambda_{\nu}^{\sigma} \eta_{\rho \sigma}=\eta_{\mu \nu}$
■ Therefore，$h_{\mu \nu}$ can be viewed as a tensor field in a flat spacetime

Perturbation of $g_{\mu \nu}$

■ Now consider a coordinate transformation

$$
x^{\mu} \rightarrow x^{\prime \mu}=x^{\mu}+\xi^{\mu}(x), \quad\left|\partial_{\mu} \xi_{\nu}\right| \leq\left|h_{\mu \nu}\right|
$$

■ The metric becomes

$$
g_{\mu \nu}(x) \rightarrow g_{\mu \nu}^{\prime}\left(x^{\prime}\right)=\frac{\partial x^{\rho}}{\partial x^{\prime \mu}} \frac{\partial x^{\sigma}}{\partial x^{\prime \nu}} g_{\rho \sigma}(x)
$$

■ Keeping leading－order terms，

$$
g_{\mu \nu}^{\prime}=\eta_{\mu \nu}-\partial_{\nu} \xi_{\mu}-\partial_{\mu} \xi_{\nu}+h_{\mu \nu}+\mathcal{O}\left(\xi^{2}\right)
$$

■ Therefore，$h_{\mu \nu}$ satisfies

$$
h_{\mu \nu}^{\prime}=h_{\mu \nu}-\xi_{\mu, \nu}-\xi_{\nu, \mu}, \quad\left|h_{\mu \nu}^{\prime}\right| \ll 1
$$

Perturbation of $g_{\mu \nu}$

\square Keeping the leading－order terms of $h_{\mu \nu}$ ，we have ${ }^{2}$

$$
\begin{aligned}
\Gamma_{\mu \rho}^{\nu} & =\frac{1}{2} \eta^{\nu \lambda}\left(\partial_{\rho} h_{\lambda \mu}+\partial_{\mu} h_{\lambda \rho}-\partial_{\lambda} h_{\mu \rho}\right) \\
R_{\mu \rho \sigma}^{v} & =\partial_{\rho} \Gamma^{\nu}{ }_{\mu \sigma}-\partial_{\sigma} \Gamma^{\nu}{ }_{\mu \rho}+\mathcal{O}\left(h^{2}\right) \\
R_{\mu \nu \rho \sigma} & =\frac{1}{2}\left(\partial_{\rho \nu} h_{\mu \sigma}+\partial_{\sigma \mu} h_{\nu \rho}-\partial_{\rho \mu} h_{\nu \sigma}-\partial_{\sigma v} h_{\mu \rho}\right)
\end{aligned}
$$

\square A direct calculation shows that，under the change of $h_{\mu \nu} \rightarrow h_{\mu \nu}-\partial_{\mu} \xi_{\nu}-\partial_{\nu} \xi_{\mu}$ ，the Rieman tensor does not change

Equation of GWs

－Define a trace－reverse tensor，

$$
\bar{h}^{\mu \nu}=h^{\mu \nu}-\frac{1}{2} \eta^{\mu \nu} h
$$

which satisfies $h=\eta_{\alpha \beta} h^{\alpha \beta}$ and $\bar{h}=-h$
－With a linearized metric，the Einstein field equations become

$$
\square \bar{h}_{\nu \sigma}+\eta_{\nu \sigma} \partial^{\rho} \partial^{\lambda} \bar{h}_{\rho \lambda}-\partial^{\rho} \partial_{\nu} \bar{h}_{\rho \sigma}-\partial^{\rho} \partial_{\sigma} \bar{h}_{\rho \nu}+\mathcal{O}\left(h^{2}\right)=-\frac{16 \pi G}{c^{4}} T_{\nu \sigma}
$$

Equation of GWs

■ Introduce Lorenz gauge（a．k．a．harmonic gauge，De Donder gauge）

$$
\partial_{\nu} \bar{h}^{\mu \nu}=0
$$

■ We finally obtain a wave equation

$$
\square \bar{h}_{v \sigma}=-\frac{16 \pi G}{c^{4}} T_{v \sigma}
$$

Equation of GWs

■ If $\bar{h}^{\mu \nu}$ does not satisfy Lorenz gauge，namely

$$
\partial_{\mu} \bar{h}^{\mu \nu}=q^{\nu} \neq 0
$$

■ We can always perform a coordinate transformation，s．t．

$$
\bar{h}_{\mu \nu}^{\prime}=\bar{h}_{\mu \nu}-\xi_{\mu, \nu}-\xi_{\nu, \mu}+\eta_{\mu \nu}\left(\partial_{\rho} \xi^{\rho}\right)
$$

■ as long as $\square \xi_{\nu}=q_{\nu}$ ，we can obtain $\partial_{\mu} \bar{h}^{\mu \nu}=0$（i．e．，Lorenz gauge）
－Lorenz gauge reduces the d．o．f．s of $h_{\mu \nu}$ from 10 to 6

Transverse Traceless Gauge

■ In vacuum，$T_{\mu \nu}=0$ ，therefore

$$
\square \bar{h}_{\mu \nu}=0
$$

thus，GWs propagate with the speed of light
■ On top of the Lorenz gauge，consider $x^{\prime \mu}=x^{\mu}+\xi^{\mu}$
\square as long as $\square \xi_{\mu}=0$ ，the Lorenz gauge is preserved
－Now $\bar{h}_{\mu \nu}$ becomes

$$
\bar{h}_{\mu \nu}^{\prime}=\bar{h}_{\mu \nu}+\xi_{\mu \nu}
$$

where $\xi_{\mu \nu}=\eta_{\mu \nu} \partial_{\rho} \xi^{\rho}-\xi_{\mu, \nu}-\xi_{\nu, \mu}$ ，satisfying $\square \xi_{\mu \nu}=0$

Transverse Traceless Gauge

■ With it，d．o．f．s of $h_{\mu \nu}$ are reduced from 6 to 2 ；specifically
■ choose ξ^{0} ，s．t．$h=0\left(\right.$ now， $\left.\bar{h}_{\mu \nu}=h_{\mu \nu}\right)$
■ choose ξ^{i} ，s．t．$h^{i 0}=0$
■ As for now，we know from the $\mu=0$ component of the Lorenz gauge $\partial_{\nu} \bar{h}^{\mu \nu}=\partial_{\nu} h^{\mu \nu}=0$ that $\partial_{0} h^{00}=0\left(\right.$ we take $\left.h^{00}=0\right)$

■ Overall，we call the following transverse－traceless gauge

$$
h^{00}=h^{i i}=h^{0 i}=0, \quad \partial_{i} h^{i j}=0
$$

We denote GWs in TT gauge as $h_{i j}^{\mathrm{TT}}$

■ For a plane wave，$\partial_{i} h^{i j}=0$ means $\hat{n}^{i} h_{i j}^{\mathrm{TT}}=0$ ，where $\hat{\boldsymbol{n}}=\boldsymbol{k} / k$ is the propagating direction

■ Without losing generality，we consider GWs propagating along z－axis，and we have

$$
h_{i j}^{\mathrm{TT}}(t, z)=\left(\begin{array}{ccc}
h_{+} & h_{\times} & 0 \\
h_{\times} & -h_{+} & 0 \\
0 & 0 & 0
\end{array}\right) \cos \left[\omega\left(t-\frac{z}{c}\right)\right]
$$

where h_{+}and h_{\times}are two independent polarizations

■ If we rotate about z axis by an angle ψ ，

$$
h_{\times} \pm i h_{+} \rightarrow e^{\mp 2 i \psi}\left(h_{\times} \pm i h_{+}\right)
$$

Therefore，gravitons are spin－2 particles
■ What are gravitons？

Standard Model of Elementary Particles and Gravity

Projection Operators

－For a given direction $\hat{\boldsymbol{n}}$ ，introduce

$$
\begin{aligned}
P_{i j}(\hat{\boldsymbol{n}}) & =\delta_{i j}-\hat{n}_{i} \hat{n}_{j} \\
\Lambda_{i j k l}(\hat{\boldsymbol{n}}) & =P_{i k} P_{j l}-\frac{1}{2} P_{i j} P_{k l}
\end{aligned}
$$

■ If $h_{k l}$ describes GWs in Lorenz gauge（not necessarily TT guage），then

$$
h_{i j} \equiv \Lambda_{i j k l} h_{k l}
$$

satisfies TT gauge

GW Detections

■ Now we consider a local free fall（FF）coordinate（note：not a TT gauge！）

■ In FF coordinate，we have $g_{\mu \nu}(P)=\eta_{\mu \nu}$ and $\Gamma^{\rho}{ }_{\mu \nu}(P)=0$
－LIGO／Virgo／KAGRA are obviously not in a FF state
■ However，it is a good approximation for some frequency bands （e．g．$\sim 100 \mathrm{~Hz}$ ）

■ Without proof，${ }^{3}$ we denote that for two nearby particles，

$$
\frac{\mathrm{d}^{2} \xi^{j}}{\mathrm{~d} t^{2}}=\frac{1}{2} \ddot{h}_{j k}^{\mathrm{TT}} \xi^{k}
$$

[^0]
GW Detections

\square Consider particles on a ring whose norm is in z－direction
■ With a＂＋＂mode GW，

$$
h_{i j}^{\mathrm{TT}}=h_{+}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \sin \omega t
$$

－Relative to the center，particles＇position becomes

$$
\xi_{i}=\left[x_{0}+\delta x(t), y_{0}+\delta y(t)\right]
$$

■ According to the equation on the previous slide，we obtain ${ }^{4}$

$$
\begin{aligned}
& \delta x(t)=\frac{h_{+}}{2} x_{0} \sin \omega t \\
& \delta y(t)=-\frac{h_{+}}{2} y_{0} \sin \omega t
\end{aligned}
$$

[^1]
GW Detections

■ Similarly，a＂\times＂mode GW gives

$$
\begin{aligned}
& \delta x(t)=\frac{h_{\times}}{2} y_{0} \sin \omega t \\
& \delta y(t)=\frac{h_{\times}}{2} x_{0} \sin \omega t
\end{aligned}
$$

－Therefore，we have the positions of particles as a function of time，

GW Polarizations in Alternative Gravity

（a）

（d）

（b）

（e）

（c）

（f）

Eardley et al．1973；Will 2014

GW Generation

－As GR is highly nonlinear，it is impossible to obtain analytic solutions in a generic setting
－Here we only present some simple results
－For more details，see
■ Buonanno＇s Les Houches Lecture arXiv：0709．4682
■ Michele Maggiore’s books Gravitational Waves（Vol I \＆Vol II）

GW Generation

■ Under Lorenz gauge，$\partial_{\mu} \bar{h}^{\mu \nu}=0$
■ Linearized Einstein equation becomes，

$$
\square \bar{h}_{\mu v}=-\frac{16 \pi G}{c^{4}} T_{\mu \nu}
$$

■ We make weak－field \＆slow－motion assumptions，and get

$$
h_{i j}^{\mathrm{TT}}(t, \mathbf{x})=\frac{1}{r} \frac{2 G}{c^{4}} \Lambda_{i j k l}(\hat{\mathbf{n}}) \ddot{M}^{k l}\left(t-\frac{r}{c}\right)
$$

where

$$
M^{i j}=\frac{1}{c^{2}} \int \mathrm{~d}^{3} x T^{00}(t, \mathbf{x}) x^{i} x^{j}
$$

is mass quadrupole moment in Newtonian approximation

GW Generation

－Take $\hat{\mathbf{n}}=(\cos \varphi \sin \theta, \sin \varphi \sin \theta, \cos \theta)$ and insert into the projection operator $\Lambda_{i j k l}(\hat{\mathbf{n}})$ ，then ${ }^{5}$

$$
\begin{aligned}
h_{+}= & \frac{G}{r c^{4}}\left\{\ddot{M}_{11}\left(\sin ^{2} \varphi-\cos ^{2} \theta \cos ^{2} \varphi\right)\right. \\
& +\ddot{M}_{22}\left(\cos ^{2} \varphi-\cos ^{2} \theta \sin ^{2} \varphi\right)-\ddot{M}_{33} \sin ^{2} \theta \\
& \left.-\ddot{M}_{12} \sin 2 \varphi\left(1+\cos ^{2} \theta\right)+\ddot{M}_{13} \cos \varphi \sin 2 \theta+\ddot{M}_{23} \sin 2 \theta \sin \varphi\right\} \\
h_{\times}= & \frac{2 G}{r c^{4}}\left\{\frac{1}{2}\left(\ddot{M}_{11}-\ddot{M}_{22}\right) \cos \theta \sin 2 \varphi-\ddot{M}_{12} \cos \theta \cos 2 \varphi\right. \\
& \left.-\ddot{M}_{13} \sin \theta \sin \varphi+\ddot{M}_{23} \cos \varphi \sin \theta\right\}
\end{aligned}
$$

${ }^{5}$ Don＇t be afraid \＆take it homework ；－）

Binary Systems

\square Consider a binary with masses m_{1} and m_{2}
■ total $M=m_{1}+m_{2}$ ，and reduced mass $\mu=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$
■ Assume a circular orbit，

$$
X(t)=R \cos \omega t, \quad Y(t)=R \sin \omega t, \quad Z(t)=0
$$

－Then the mass quadrupole moments are

$$
\begin{aligned}
& M_{11}=\frac{1}{2} \mu R^{2}(1+\cos 2 \omega t) \\
& M_{22}=\frac{1}{2} \mu R^{2}(1-\cos 2 \omega t) \\
& M_{12}=\frac{1}{2} \mu R^{2} \sin 2 \omega t
\end{aligned}
$$

Binary Systems

■ Insert into expressions of $h_{+} \& h_{\times}$，we have

$$
\begin{aligned}
& h_{+}(t)=\frac{1}{r} \frac{4 G}{c^{4}} \mu R^{2} \omega^{2} \frac{\left(1+\cos ^{2} \theta\right)}{2} \cos (2 \omega t) \\
& h_{\times}(t)=\frac{1}{r} \frac{4 G}{c^{4}} \mu R^{2} \omega^{2} \cos \theta \sin (2 \omega t)
\end{aligned}
$$

－These are the leading－order GW formuae that we frequently use

GW Radiation

■ As GWs carry energy，the GW radiation reduces the binary＇s orbital energy \Leftarrow energy balance equation
－The orbital size becomes smaller，and the orbital frequency becomes larger
■ At leading order，${ }^{6}$ with $\nu \equiv \mu / M$ and $\mathcal{M}=\mu^{3 / 5} M$ ，

$$
\begin{aligned}
\frac{\dot{\omega}}{\omega^{2}} & =\frac{96}{5} v\left(\frac{G M \omega}{c^{3}}\right)^{5 / 3} \\
\dot{f}_{\mathrm{GW}} & =\frac{96}{5} \pi^{8 / 3}\left(\frac{G M}{c^{3}}\right)^{5 / 3} f_{\mathrm{GW}}^{11 / 3}
\end{aligned}
$$

${ }^{6} \mathrm{GW}$ frequency is twice that of the orbit，$f_{\mathrm{GW}}=\omega / \pi$

Separation of GWs from the Background

■ On a curved，dynamical background metric

$$
g_{\mu \nu}(x)=\bar{g}_{\mu \nu}(x)+h_{\mu \nu}(x), \quad\left|h_{\mu \nu}\right| \ll 1
$$

such that satisfying（short－wave expansion）$\lambda \ll L_{B}$ or $f \gg f_{B}$
■ Ricci tensor： $\mathcal{O}(1), \mathcal{O}(h)$ ，and $\mathcal{O}\left(h^{2}\right)$

$$
R_{\mu \nu}=\bar{R}_{\mu \nu}+R_{\mu \nu}^{(1)}+R_{\mu \nu}^{(2)}+\ldots
$$

■ $\bar{R}_{\mu \nu}$ ：only low frequency
$\square R_{\mu \nu}^{(1)}$ ：only high frequency
■ $R_{\mu \nu}^{(2)}$ ：mixture of both

Separation of GWs from the Background

－Master equations

$$
\begin{aligned}
\bar{R}_{\mu \nu} & =-\left[R_{\mu \nu}^{(2)}\right]^{\text {Low }}+\frac{8 \pi G}{c^{4}}\left(T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right)^{\text {Low }} \\
R_{\mu \nu}^{(1)} & =-\left[R_{\mu \nu}^{(2)}\right]^{\text {High }}+\frac{8 \pi G}{c^{4}}\left(T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right)^{\text {High }}
\end{aligned}
$$

－low－frequency equation \Rightarrow energy－stress tensor of GWs
■ high－frequency equation \Rightarrow propagating equation of GWs

Low－frequency Equation

$$
\bar{R}_{\mu \nu}=-\left[R_{\mu \nu}^{(2)}\right]^{\mathrm{Low}}+\frac{8 \pi G}{c^{4}}\left(T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right)^{\text {Low }}
$$

－If curvature is determined by $\mathrm{GWs} \Rightarrow h \sim \frac{\lambda}{L_{B}}$
－If curvature is determined by matter fields $\Rightarrow h \ll \frac{\lambda}{L_{B}}$
■ These two conclusions will be important for a later context

Low－frequency Equation

－Difficulties with localized energy－stress tensor in GR
－Learn from renormalization group
＂coarse－grained＂form of the Einstein equation

$$
\bar{R}_{\mu \nu}-\frac{1}{2} \bar{g}_{\mu \nu} \bar{R}=\frac{8 \pi G}{c^{4}}\left(\bar{T}_{\mu \nu}+t_{\mu \nu}\right)
$$

where

$$
t_{\mu \nu} \equiv-\frac{c^{4}}{8 \pi G}\left\langle R_{\mu \nu}^{(2)}-\frac{1}{2} \bar{g}_{\mu \nu} R^{(2)}\right\rangle
$$

Low－frequency Equation

■ In Lorentz gauge and with $h=0$ ，one has

$$
t_{\mu \nu}=\frac{c^{4}}{32 \pi G}\left\langle\partial_{\mu} h_{\alpha \beta} \partial_{\nu} h^{\alpha \beta}\right\rangle
$$

■ Explicit calculations show that，${ }^{7} t_{\mu \nu}$ only depends on the physical modes $h_{i j}^{\mathrm{TT}} \Rightarrow$ namely，gauge invariant

■ Energy－momentum exchange between matters and GWs

$$
\bar{D}^{\mu}\left(\bar{T}_{\mu \nu}+t_{\mu \nu}\right)=0
$$

${ }^{7}$ Use $x^{\prime \mu}=x^{\mu}+\xi^{\mu}$

Low－frequency Equation

－With energy－stress tensor for GWs，we can discuss many aspects of GWs，e．g．，

$$
t^{00}=\frac{c^{2}}{16 \pi G}\left\langle\dot{h}_{+}^{2}+\dot{h}_{\times}^{2}\right\rangle
$$

－Similarly to the electromagnetism，we have

$$
\begin{aligned}
& \frac{\mathrm{d} E}{\mathrm{~d} A \mathrm{~d} t}=+c t^{00} \\
& \frac{\mathrm{~d} P^{k}}{\mathrm{~d} A \mathrm{~d} t}=+t^{0 k}
\end{aligned}
$$

Low－frequency Equation

－We can have the energy radiation rate and the momentum taken away by GWs，

$$
\begin{aligned}
\frac{\mathrm{d} E}{\mathrm{~d} t} & =\frac{c^{3} r^{2}}{32 \pi G} \int d \Omega\left\langle\dot{h}_{i j}^{\mathrm{TT}} \dot{i}_{i j}^{\mathrm{TT}}\right\rangle \\
\frac{d P^{k}}{d t} & =-\frac{c^{3}}{32 \pi G} r^{2} \int d \Omega\left\langle\dot{h}_{i j}^{\mathrm{TT}} \partial^{k} h_{i j}^{\mathrm{TT}}\right\rangle
\end{aligned}
$$

■ as well as the energy spectrum

$$
\frac{\mathrm{d} E}{\mathrm{~d} f}=\frac{\pi c^{3}}{2 G} f^{2} r^{2} \int d \Omega\left(\left|\tilde{h}_{+}(f)\right|^{2}+\left|\tilde{h}_{\times}(f)\right|^{2}\right)
$$

and so on

High－frequency Equation

$$
R_{\mu \nu}^{(1)}=-\left[R_{\mu \nu}^{(2)}\right]^{\text {High }}+\frac{8 \pi G}{c^{4}}\left(T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right)^{\text {High }}
$$

■ If $T^{\mu \nu}=0,{ }^{8}$ one has $R_{\mu \nu}^{(1)}=-\left[R_{\mu \nu}^{(2)}\right]^{\text {High }}$

$$
\begin{aligned}
& R_{\mu \nu}^{(1)} \sim \partial^{2} h \sim \frac{h}{\lambda^{2}} \sim \frac{1}{\epsilon} \\
& R_{\mu \nu}^{(2)} \sim \partial^{2} h^{2} \sim \frac{h^{2}}{\lambda^{2}} \sim 1
\end{aligned}
$$

$■$ At leading order，$R_{\mu \nu}^{(1)}=0 \Rightarrow \square \bar{h}_{\mu \nu}=0$ in Lorenz gauge

[^2]
High－frequency Equation

$$
R_{\mu \nu}^{(1)}=-\left[R_{\mu \nu}^{(2)}\right]^{\mathrm{High}}+\frac{8 \pi G}{c^{4}}\left(T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right)^{\text {High }}
$$

■ If $T^{\mu \nu} \neq 0,{ }^{9}$ one simply has $R_{\mu \nu}^{(1)}=0$
■ Imposing a generalized＂Lorenz gauge＂ $\bar{D}^{\nu} \bar{h}_{\mu \nu}=0$ ，one has a wave equation in curved spacetime

$$
\bar{D}^{\rho} \bar{D}_{\rho} \bar{h}_{\mu \nu}=0
$$

${ }^{9}$ Now，according to the low－frequency equation，one has $h \ll \lambda / L_{B}$ ；also， $\left(T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right)^{\mathrm{High}}=\mathcal{O}\left(h / L_{B}^{2}\right)$

[^0]: ${ }^{3}$ It can be obtained from geodesic equation；see Sec． 3.3 in arXiv：0709．4682

[^1]: ${ }^{4}$ Notice that，amazingly，now it is a Newtonian－like force！

[^2]: ${ }^{8}$ Now，according to the low－frequency equation，one has $h \sim \lambda / L_{B}$

