Plan of Lectures

Overview

 Lecture duration ~ 1 hr
 What are GWs?
 Lecture duration ~ 2 hr
 Gravity Tests with GWs
 Lecture duration ~ 1.5 hr.

Contact: lshao@pku.edu.cn

That would be one of the most fascinating things man could do, because it would tell you very much how the universe started.

— Rainer Weiss

Frontiers of GWs (III): Testing GR

Kavli Institute for Astronomy and Astrophysics

Lijing Shao (邵立晶)

KITS Summer School · 江苏溧阳

References

Matched Filter

- Finn, PRD 46 (1992) 5236
- Cutler & Flanagan, PRD 49 (1994) 2658
- Cutler, PRD 57 (1998) 7089
- LIGO/Virgo Collaboration
 - **GW150914 & GW170817**: PRL 116:221101; PRL 123:011102
 - **GWTC-1 & GWTC-2**: PRD 100:104036; PRD 103:122002
- Review Papers¹
 - Berti et al., CQG 32 (2015) 243001
 - Yunes, Yagi, & Pretorius, PRD 94 (2016) 8

¹Both are quite long.

Modern Physics Landscape

How the Universe is Ruled

Particles of strong, weak, electromagnetic interactions

$$\begin{split} \mathcal{L}_{\text{lepton}} &= \frac{1}{2} i e e_{a}^{\mu} \left[\bar{L}_{A} \gamma^{a} \stackrel{\frown}{D}_{\mu} L_{A} + \bar{R}_{A} \gamma^{a} \stackrel{\frown}{D}_{\mu} R_{A} \right] \\ \mathcal{L}_{\text{quark}} &= \frac{1}{2} i e e_{a}^{\mu} \left[\bar{Q}_{A} \gamma^{a} \stackrel{\frown}{D}_{\mu} \dot{Q}_{A} + \bar{U}_{A} \gamma^{a} \stackrel{\frown}{D}_{\mu} U_{A} + \bar{D}_{A} \gamma^{a} \stackrel{\frown}{D}_{\mu} D_{A} \right] \\ \mathcal{L}_{\text{quark}} &= -e \left[(G_{L})_{AB} \bar{L}_{A} \phi R_{B} + (G_{U})_{AB} \bar{Q}_{A} \phi^{c} U_{B} + (G_{D})_{AB} \bar{Q}_{A} \phi D_{B} \right] + \text{h.c.} \\ \mathcal{L}_{\text{Higgs}} &= -e \left[(D_{\mu} \phi)^{\dagger} D^{\mu} \phi - \mu^{2} \phi^{\dagger} \phi + \frac{\lambda}{3!} \left(\phi^{\dagger} \phi \right)^{2} \right] \\ \mathcal{L}_{\text{gauge}} &= -\frac{1}{2} e \left[\text{Tr} \left(G_{\mu\nu} G^{\mu\nu} \right) + \text{Tr} \left(W_{\mu\nu} W^{\mu\nu} \right) + \frac{1}{2} B_{\mu\nu} B^{\mu\nu} \right] \end{split}$$

Spacetime of gravitational interaction

$$S_{\text{gravity}} = \frac{1}{2\kappa} \int \mathrm{d}^4 x \, e(R - 2\Lambda + \cdots)$$

Absence of Quantum Gravity

- On one hand, we have Quantum Field Theory to describe the electromagnetic, strong, and weak interactions
- On the other hand, we have General Relativity to describe the gravity, as the dynamics of curved spacetime
- However, QFT and GR are Not Compatible at their face values!

[Planck & Einstein]

Theoretical physics is beautiful, but not yet complete

Gravity may be holding the key

Lijing Shao (邵立晶)

GWs (III): Testing GR

KITS Summer School 5 / 57

Parameter Space in Gravity Tests

Parameter Space in Gravity Tests

- G1: Quasi-stationary weak-field regime
- G2: Quasi-stationary strong-field regime
- G3: Highly dynamical strong-field regime
- GW: Radiation regime

Wex 2014 (arXiv:1402.5594)

Lijing Shao (邵立晶)

Gravitational-wave Data

mm

First detection!

9:50:45 UTC, 14 September 2015

LIGO Hanford signal

MM

Lijing Shao (邵立晶)

Gravitational Waveform (Time Domain)

Merger: numerical relativity

Ringdown: black hole perturbation

Lijing Shao (邵立晶)

Eccentric Waveform (Time Domain)

SEOBNRE: Cao & Han 2017; Liu, Cao, Shao 2020; Liu, Cao, Zhu 2021

Lijing Shao (邵立晶)

Matched Filter

Matched fitlering is a standard analysis method for wideband

time series data [Finn 1992]

$$(\mathbf{g}|\mathbf{k}) \equiv 2 \int_0^\infty \frac{\tilde{g}^*(f)\tilde{k}(f) + \tilde{g}(f)\tilde{k}^*(f)}{S_n(f)} \mathrm{d}f$$

Lijing Shao (邵立晶)

Matched Filter

The power of matched fitlering lays in its ability/sensitivity to the phase of time-series data

Credit: Vivien Raymond / Cardiff U.

Parameter Estimation

Credit: Vivien Raymond / Cardiff U.

Parameter Estimation: GW150914

- GW data encode plenty of information of GW sources
 - Apply matched filter to data & theory

Primary black hole mass	$36^{+5}_{-4}M_{\odot}$		
Secondary black hole mass	$29^{+4}_{-4} M_{\odot}$		
Final black hole mass	$62^{+4}_{-4}M_{\odot}$		
Final black hole spin	$0.67\substack{+0.05 \\ -0.07}$		
Luminosity distance	410 ⁺¹⁶⁰ ₋₁₈₀ Mpc		
Source redshift z	$0.09\substack{+0.03\\-0.04}$		

LIGO/Virgo 2016, PRL

$36 + 29 M_{\odot}$: 0.2 sec, SNR=23

GW150914 (LIGO/Virgo 2016)

$14 + 8 M_{\odot}$: 1 sec, SNR=13

GW151226 (LIGO/Virgo 2016)

Lijing Shao (邵立晶)

GW Transient Catalog GWTC-1 (LIGO/Virgo 2019)

	Туре	<i>m</i> ₁ [<i>M</i> _☉]	<i>m</i> ₂ [<i>M</i> _☉]	$d_L [{ m Mpc}]$	Redshift z
GW150914	BBH	$35.6^{+4.8}_{-3.0}$	$30.6^{+3.0}_{-4.4}$	430^{+150}_{-170}	$0.09\substack{+0.03 \\ -0.03}$
GW151012	BBH	$23.3^{+14.0}_{-5.5}$	$13.6^{+4.1}_{-4.8}$	1060^{+540}_{-480}	$0.21\substack{+0.09 \\ -0.09}$
GW151226	BBH	$13.7^{+8.8}_{-3.2}$	$7.7^{+2.2}_{-2.6}$	440^{+180}_{-190}	$0.09\substack{+0.04 \\ -0.04}$
GW170104	BBH	$31.0^{+7.2}_{-5.6}$	$20.1^{+4.9}_{-4.5}$	960^{+430}_{-410}	$0.19\substack{+0.07 \\ -0.08}$
GW170608	BBH	$10.9^{+5.3}_{-1.7}$	$7.6^{+1.3}_{-2.1}$	320^{+120}_{-110}	$0.07^{+0.02}_{-0.02}$
GW170729	BBH	$50.6^{+16.6}_{-10.2}$	$34.3^{+9.1}_{-10.1}$	2750^{+1350}_{-1320}	$0.48\substack{+0.19 \\ -0.20}$
GW170809	BBH	$35.2^{+8.3}_{-6.0}$	$23.8^{+5.2}_{-5.1}$	990^{+320}_{-380}	$0.20\substack{+0.05 \\ -0.07}$
GW170814	BBH	$30.7^{+5.7}_{-3.0}$	$25.3^{+2.9}_{-4.1}$	580^{+160}_{-210}	$0.12\substack{+0.03 \\ -0.04}$
GW170817	BNS	$1.46\substack{+0.12\\-0.10}$	$1.27\substack{+0.09 \\ -0.09}$	40^{+10}_{-10}	$0.01\substack{+0.00 \\ -0.00}$
GW170818	BBH	$35.5^{+7.5}_{-4.7}$	$26.8^{+4.3}_{-5.2}$	1020^{+430}_{-360}	$0.20\substack{+0.07 \\ -0.07}$
GW170823	BBH	$39.6^{+10.0}_{-6.6}$	$29.4_{-7.1}^{+6.3}$	1850^{+840}_{-840}	$0.34\substack{+0.13 \\ -0.14}$

Signals of GW Events (Frequency Domain)

Liu, Shao, Zhao, Gao 2020, MNRAS [arXiv:2004.12096]

Lijing Shao (邵立晶)

GWTC-1: Sky Position (LIGO/Virgo 2019)

New Events from O3 (LIGO/Virgo 2020)

GW190412: Observation of a Binary-Black-Hole Coalescence with Asymmetric Masses

■ $30 M_{\odot} + 8 M_{\odot}$; higher multipole modes

GW190425: Observation of a Compact Binary Coalescence with Total Mass $\sim 3.4 M_{\odot}$

New Events from O3 (LIGO/Virgo 2020)

- GW190521: A Binary Black Hole Merger with a Total Mass of 150 *M*_☉
 - $\blacksquare 85 \, M_{\odot} + 66 \, M_{\odot} \Rightarrow 142 \, M_{\odot}$
 - Intermediate mass black hole?
- **GW190814**: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 M_{\odot} Compact Object
 - Mass gap: either the lightest black hole or the heaviest neutron star ever discovered

GW200105 & GW200115: BH-NS Binaries

Lijing Shao (邵立晶)

Masses in the Stellar Graveyard

in Solar Masses

Testing Gravity with BBHs

- Residual tests (RT)
- Inspiral-merger-ringdown consistency tests (IMR)
- Parameterized tests: inspiral & post-inspiral (PI & PPI)
- Modified dispersion relation (MDR)

Event –	Properties			CN ID	GR tests performed					
	D _L [Mpc]	$M_{\rm tot}$ [M_{\odot}]	$[M_{\odot}]$	af	SNK	RT	IMR	PI	PPI	MDR
GW150914 ^b	430+150	66.2+3.7	63.1+3.3	$0.69^{+0.05}_{-0.04}$	25.3+0.1	1	1	1	1	1
GW151012 ^b	1060+550	37.3+10.6	35.7+10.7	$0.67_{-0.11}^{+0.13}$	$9.2^{+0.3}_{-0.4}$	1	-	-	1	1
GW151226h.c	440+180	21.5+6.2	20.5+6.4	$0.74_{-0.05}^{+0.07}$	$12.4_{-0.3}^{+0.2}$	1	-	1	1	1
GW170104	960+440	51.3+5.3	49.1+5.2	0.66+0.08	$14.0^{+0.2}_{-0.3}$	1	1	1	1	1
GW170608	320+120	18.6+3.1	$17.8^{+3.2}_{-0.7}$	$0.69^{+0.04}_{-0.04}$	15.6+0.2	1	-	1	1	1
GW170729 ^d	2760+1380	85.2+15.6	80.3+14.6	$0.81^{+0.07}_{-0.13}$	$10.8^{+0.4}_{-0.5}$	1	1	-	1	1
GW170809	990 ⁺³²⁰ -380	59.2+5.4	56.4+5.2	$0.70^{+0.08}_{-0.09}$	$12.7_{-0.3}^{+0.2}$	1	1	-	1	1
GW170814	580+160	56.1+3.4	53.4+3.2	$0.72^{+0.07}_{-0.05}$	$17.8^{+0.3}_{-0.3}$	1	1	1	1	1
GW170818	1020+430	62.5+5.1	59.8+4.8	$0.67^{+0.07}_{-0.08}$	11.9+0.3	1	1	-	1	1
GW170823	1850^{+840}_{-840}	68.9 ^{+9.9} -7.1	$65.6^{+9.4}_{-6.6}$	$0.71\substack{+0.08\\-0.10}$	$12.1_{-0.3}^{+0.2}$	1	1	-	1	1

Residual Tests (LIGO/Virgo 2019)

- Model: best fitted model
- Residual = Data Model
- Residual tests: consistent with noise distribution!

Event	IFOs	Residual SNR ₉₀	Fitting factor	p-value	
GW150914 HL		6.4	≥ 0.97	0.34	
GW151012	HL	6.9	≥ 0.81	0.18	
GW151226	HL	5.7	≥ 0.91	0.76	
GW170104	HL	5.2	≥ 0.94	0.97	
GW170608	HL	7.8	≥ 0.90	0.07	
GW170729	HLV	6.5	≥ 0.87	0.72	
GW170809	HLV	6.7	≥ 0.91	0.73	
GW170814	HLV	8.6	≥ 0.90	0.19	
GW170818	HLV	10.1	≥ 0.78	0.13	
GW170823	HL	5.4	≥ 0.92	0.89	

IMR Consistency Tests (LIGO/Virgo 2019)

- Parameter estimation separately with inpsiral and merger + ringdown
- Check consistency!

Event	$f_{\rm c}$ [Hz]	$\rho_{\rm IMR}$	$\rho_{\rm insp}$	$\rho_{\rm post-insp}$	GR quantile [%
GW150914	132	25.3	19.4	16.1	55.5
GW170104	143	13.7	10.9	8.5	24.4
GW170729	91	10.7	8.6	6.9	10.4
GW170809	136	12.7	10.6	7.1	14.7
GW170814	161	16.8	15.3	7.2	7.8
GW170818	128	12.0	9.3	7.2	25.5
GW170823	102	11.9	7.9	8.5	80.4

Parameterized Tests (LIGO/Virgo 2019)

Lijing Shao (邵立晶)

Graviton Dispersion Relation

- **GR**: massless spin-2 metric field $\Rightarrow E = p$
- Lorentz-invariant massive graviton $\Rightarrow E^2 = p^2 + m^2$
 - Both the phase velocity E/p and the group velocity $\partial E/\partial p$ depend on the energy/frequency of graviton
 - GWs gain *frequency-dependent* time delays when they arrive at the Earth
 - In a FRW spacetime, one has [Will 1998, PRD57:2061]

$$\Delta t_a = (1+z) \left[\Delta t_e + \frac{D}{2\lambda_g^2} \left(\frac{1}{f_e^2} - \frac{1}{f_e'^2} \right) \right]$$

Propagation of GWs

The extra time delay results in a phase shift in $h(f) \propto e^{i\Psi(f)}$

$$\Psi(f) = \Psi_{\mathrm{GR}}(f) - rac{\pi^2 D \mathcal{M}}{\lambda_g^2 (1+z)} (\pi \mathcal{M} f)^{-1}$$

- On the other hand, the waveform is *totally* calculable and deterministic in GR
- Therefore, GWs provide an observational window to the dispersion relation of graviton

Propagation of GWs with Lorentz Violation

- Lorentz violation occurs in a few quantum gravity candidate theories [Kostelecký & Samuel 1989; Amelino-Camelia 2013]
- Dispersion relation of GWs with isotropic Lorentz violation

[Mirshekari, Yunes, Will 2012]

$$E^2 = p^2 c^2 + m_g^2 c^4 + \mathbb{A} p^\alpha c^\alpha$$

where m_g is the graviton mass; \mathbb{A} and α are two Lorentz-violating parameters

Lorentz-violating Propagation of GWs

LIGO/Virgo 2021

Lorentz-violating Propagation of GWs

But... such a combination is problematic in general

LIGO/Virgo 2021

Standard-model Extension

The most generic linearized gravity has the Lagrangian

[Kostelecký & Mewes 2018]

$$\mathcal{L}_{\mathcal{K}^{(d)}} = rac{1}{4} h_{\mu
u} \hat{\mathcal{K}}^{(d)\mu
u
ho\sigma} h_{
ho\sigma}$$

where $\hat{\mathcal{K}}^{(d)\mu\nu\rho\sigma} = \mathcal{K}^{(d)\mu\nu\rho\sigma i_1 i_2 \cdots i_{d-2}} \partial_{i_1} \partial_{i_2} \cdots \partial_{i_{d-2}}$

It predicts a modified dispersion relation for GWs

$$\omega = \left(1 - \zeta^0 \pm \sqrt{\left(\zeta^1\right)^2 + \left(\zeta^2\right)^2 + \left(\zeta^3\right)^2}
ight) \mu$$

Standard-model Extension

$$\omega = \left(1 - \zeta^{0} \pm \sqrt{(\zeta^{1})^{2} + (\zeta^{2})^{2} + (\zeta^{3})^{2}}\right) \rho$$

$$\zeta^{0} = \sum_{djm} \omega^{d-4} Y_{jm}(\hat{n}) k_{(1)jm}^{(d)}$$

$$\zeta^{1} \mp i\zeta^{2} = \sum_{djm} \omega_{\pm 4}^{d-4} Y_{jm}(\hat{n}) \left[k_{(E)jm}^{(d)} \pm ik_{(B)jm}^{(d)}\right]$$

$$\zeta^{3} = \sum_{djm} \omega^{d-4} Y_{jm}(\hat{n}) k_{(V)jm}^{(d)}$$

Therefore, gravitons of different polarization or frequency, coming from different directions have different velocity

GWTC-1 Events

A simplified/naive approach: $|\omega_{GW}\Delta t| \leq 2\pi/\rho$

We have all the information available to perform the test

Shao 2020, PRD101:104019

Anisotropic Birefringence Combined Search

We have all the information available to perform the test

Shao 2020, PRD101:104019

Polarization Tests (LIGO/Virgo 2019)

Triple detections

GW170729, GW170809, GW170814, GW170818

■ Bayes factors: 10¹−10²

tensor vs vector

tensor vs scalar

Waveform: tidal deformability (LIGO/Virgo 2017)

SEOBNRv4T

- tidal deformability
- equation of state

Lijing Shao (邵立晶)

Speed of Gravity (LIGO/Virgo 2017)

The famous 1.7 sec

 $-3\times 10^{-15} \leqslant \frac{\Delta v}{v_{\rm EM}} \leqslant +7\times 10^{-16}$

- strong implications on cosmological models
 - ... tons of PRL papers

Polarization Tests (LIGO/Virgo 2019)

Precise localization: NGC 4993

- Bayes factors
 - tensor vs vector: 10²¹
 - tensor vs scalar: 10²³
- much tighter than BBHs

Hubble Constant (LIGO/Virgo 2017)

 By simultaneously measuring redshift and luminosity distance, GWs provide an independent way to probe cosmological parameters [Schutz 1986]

Parameterized Tests (LIGO/Virgo 2019)

$$S = \frac{c^4}{16\pi G_*} \int \frac{\mathrm{d}^4 x}{c} \sqrt{-g_*} \left[R_* - 2g_*^{\mu\nu} \partial_\mu \varphi \partial_\nu \varphi - V(\varphi) \right] + S_m \left[\psi_m; A^2(\varphi) g_{\mu\nu}^* \right]$$

 A class of cosmologically well-motivated scalar-tensor theories, that are solely described by two theory parameters: α₀ & β₀

$$egin{aligned} V(arphi) &= 0 \ A(arphi) &= \exp\left(eta_0arphi^2/2
ight) \ , \quad lpha_0 &= eta_0arphi_0 \end{aligned}$$

Damour & Esposito-Farèse 1992; 1993; 1996

Nonperturbative spontaneous scalarization

could happen for isolated neutron stars

Damour & Esposito-Farèse 1992; 1993; 1996

Strong-field behavior is analogous to Landau's phase transition after a critical point

Damour & Esposito-Farèse 1996; Esposito-Farèse 2004; Sennett, Shao, Steinhoff 2017

Lijing Shao (邵立晶)

Massive Scalar-Tensor Gravity

- When a mass term is included, say $V(\varphi) \sim m^2 \varphi^2$, a
 - Yukawa-type suppression happens for the deviation

Ramazanoğlu & Pretorius 2016; Xu, Gao, Shao 2020; Hu, Gao, Xu, Shao, in prep

Lijing Shao (邵立晶)

Strong-field gravity can be VERY different from weak-field gravity

Due to their **asymmetry**, neutron-star white-dwarf systems provide stringent limits on dipole radiation $P_h^{\text{elipole}} \propto (\alpha_{\text{NS}} - \alpha_0)^2$

Combination of Multiple NS-WD Binaries

- Strong-field effects could happen at different NS masses for different EOSs [Shibata et al. 2014, PRD 89:084005]
- Combining NS-WDs put the best limits on a class of scalar tensor theories for different EOSs [Shao et al. 2017, PRX 7:041025]

Combination of Multiple NS-WD Binaries

Reduced-order surrogate models to speed up Markov-chain

Monte Carlo runs: pySTGROM,² & pySTGROMX³

²https://github.com/BenjaminDbb/pySTGROM ³https://github.com/mh-guo/pySTGROMX

Zhao, Shao, et al. 2019 Guo, Zhao, Shao, arXiv:2106.01622

Lijing Shao (邵立晶)

GWs (III): Testing GR

KITS Summer School 49 / 57

Gravitational Waves

Will 1994; Damour & Esposito-Farèse 1998; Shao et al. 2017, PRX

Lijing Shao (邵立晶)

Gravitational Waves

Damour & Esposito-Farèse 1998; Zhao, Shao, et al., arXiv:2106.04883

Lijing Shao (邵立晶)

Gravitational Waves

Zhao, Shao, et al., arXiv:2106.04883

Summary

- Einstein is still right
- GWs launch a new era to test gravity
- Hope something new emerges soon

 $G_{\mu\nu} = 8\pi G T_{\mu\nu}$

Albert Einstein (1915)

Only a tiny part of GW spectrum was revealed by now Stay tuned!

Lijing Shao (邵立晶)

An exciting era for astronomers & physicists

Lijing Shao (邵立晶)

