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1 Motivation

Why are we interested in JT gravity, this particular 2 dimensional gravity theory?
Or what kind of questions are we going to address in this simple toy model of
gravitational theory?

1. Quantum gravity. The path integral of quantum gravity with action

IEH =
1

16πGN

∫
ddx
√
−gR (1)
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is potentially well defined in 2d since the dimension of the Newton constant
is zero [GN ] = 2 − d = 0. We will see indeed that the partition function of
JT gravity can be computed exactly and analytically.

2. Black hole physics. (Nearly) extremal black holes have a universal sector
which is described by the JT gravity.

3. AdS/CFT duality. In 2d, the AdS2/CFT1 is every special and different from
the higher dimensional cases. In higher dimensional cases the duality may be
understood as the duality between the open and closed channels of D−branes.
Similarly in AdS2/CFT1, the relevant object is D0-brane which is point-like
whose spectrum is gapped. Therefore, in the low energy limit, the only thing
left is the ground state which is supposed to be described by the CFT1. On
the other hand the scale invariance requires a vanishing Hamiltonian in one
dimension which means this CFT1 is just a theory of a constraint. o go
beyond the ground state, we have to zoom out a little bit from the decoupling
limit to include some excitations. It also means somehow we have to break
the conformal symmetry. The wormhole solutions also suggests that gravity
may be not dual to a particular field theory but an ensemble average which
is in tension with the well studied example AdS5/CFT4.

4. Information paradox. Later on we will focus on this particular problem of
black hole physics to show how this problem can be solved in JT gravity.
Again because JT gravity is so simple that lots of the calculation can be done
explicitly.

5. Some key concepts: entanglement wedge, quantum extremal surface, Island,
replica wormhole, ensemble average

2 Dimensional reduction of near extremal black

hole

In this section 2, let us derive the JT gravity action from a dimensional reduction
of four dimensional near extremal magnetic charged black hole. The 4D Euclidean
action is

S = − 1

16πG

∫
d4x
√
ĝ(R̂− 2Λ̂)− 1

8πG

∫
d3x
√
γ̂K(3) +

1

4G

∫
d4x
√
ĝF 2, (2)

where we have included the Gibbons-Hawking boundary term in the action. The γ̂
is the determinant of the induced 3D metric and K(3) is the trace of the extrinsic
curvature of the boundary. The black hole we are considering is a magnetic one
with the flux given by

Fθφ = Qm sin θ. (3)

2We closely follow [1802.09547], ”On the Dynamics of Near-Extremal Black Holes”
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For dimensional reduction, we assume the 4D metric to have the form

ds2 = gαβ(t, r)dxαdxβ + Φ2(t, r)dΩ2
2, (4)

where gαβ is the 2D part with coordinates (t, r) and the dilaton Φ plays the role of
the radius of the 2-sphere we want to reduce. Using the identity in the appendix,
we can express the 4D Ricci scalar as

R̂ = R+ 2e−2w − 4∇2w − 6(∇w)2, w = log Φ (5)

and since K3 = ∇αn̂α so it is equal to K + 2nα∂αΦΦ−1 . The determined of the
metric becomes √

ĝ =
√
gΦ2,

√
γ̂ =
√
γΦ2, (6)

Other useful identities are

−4∇2w − 6(∇w)2 = −4(−Φ−2(∇Φ)2 + Φ−1∇2Φ)− 6Φ−2(∇Φ)2

= −4Φ−1∇2Φ− 2Φ−2(∇Φ)2, (7)

here we can integrate the first term by part as∫
d4x
√
gΦ2Φ−1 1

√
g
∂α[
√
ggαβ∂β]Φ = 4π

∫
d2x
√
g(∇Φ)2 − 4π

∫
d2x∂α(

√
ggαβΦ∂βΦ)

= −4π

∫
bdy

√
γΦnα∂αΦ. (8)

Combining all terms in the end we arrive at

S = − 1

4G

∫
d2x
√
g
[
2 + Φ2(R− 2Λ̂) + 2(∇Φ)2

]
+

2πQ2
m

G

∫
d2x
√
gΦ−2

− 1

2G

∫
bdy

√
γΦ2K. (9)

Next we perform a Weyl rescaling

gαβ →
Φ0

Φ
gαβ (10)

to cancel the term (∇Φ)2. The useful identities are

R→ e−2v(R− 2∇2v),

K → e−v(K + nα∂αv), e2v =
Φ0

Φ
. (11)

The resulted action is

S = − 1

4G

∫
d2x
√
g

[
2Φ0

Φ
+ Φ2R− 2Φ0ΦΛ̂

]
+

2πQ2
m

G

∫
d2x
√
g

Φ0

Φ3
,

− 1

2G

∫
bdy

√
γΦ2K. (12)
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At last we expand the dilaton around the extremal dilaton value Φ0 as

Φ = Φ0 + φ. (13)

Keeping the leading order of φ we arrive at

S = −Φ2
0

4G

(∫
d2x
√
gR+ 2

∫
bdy

√
γK

)
− 1

2G

∫
d2x
√
gφ(R− Λ2)− 1

G

∫
bdy

√
γφK +O(φ2), (14)

which is the action of JT gravity.
Let us consider the simplest example. The metric and the electromagnetic field

are given by

ds2 = −∆dt2 + ∆−1dr2 + r2dΩ2
2,

= −(r − r+)(r − r−)

r2
dt2 +

r2

(r − r+)(r − r−)
dr2 + r2dΩ2

2,

F = Q sin θdφ ∧ dθ, (15)

where

∆ = 1− 2MG4

r
+
Q2G4

r2
, G4 = l2p,

r± = Qlp + El2p ±
√

2QEl3p + E2l4p,

E = M − Q

lp
. (16)

The case E = 0 corresponds to the extremal black hole. To take a near horizon
limit, we define a new coordinate

z =
Q2l2p
r − r+

, (17)

and take lp → 0 with z fixed. The resulting metric

ds2 ∼ l2pQ2

(
−dt2 + dz2

z2
+ dΩ2

2

)
, (18)

which is the metric of the space AdS2×S2. The Hawking temperature of the black
hole is given by the surface gravity at the horizon:

TH =
r+ − r−

4πr2
+

∼
2
√

2EQl3p

4πl2pQ
2

=
1

2π

√
2E

lpQ3
+O(E3/2). (19)

near extremality, where we understand this formula as the expansion of small exci-
tation energy E. Therefore we have the energy-temperature relation for the small
excitation

E = 2π2Q3lpT
2
H . (20)
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So we can not take the near horizon limit lp → 0 with fixed E,Q and TH . Recall
in higher dimension cases the energy behaves like E ∼ V TH . It implies that if we
fix Q then E has to be zero so there is no allowed excitation if we want to keep the
near horizon geometry;

The other way to understand this conclusion is from the black hole gap. For
non-extremal black hole, the energy of Hawking radiation is in the scale of the
Hawking temperature TH . So the black hole thermodynamic description will break
down when E ∼ TH , i.e.

E ∼ 1

lpQ3
, (21)

which is called the black hole gap which gives the energy gap of the excitation above
the vacuum. In the limit lp → 0 this gap is just infinity. It seems that gravitational
theory with AdS2 is boring and it seems that there is no non-trivial CFT dual.

3 Models of AdS2 Backreaction and Hologra-

phy

The main reference is [1]. The key idea is that let us consider a more general family
of 1 + 1 dimensional models

L =
1

16πGN

√
−g{Φ2R+ λ(∇Φ)2 − U(Φ)}, (22)

then for some choice of U(Φ) and the λ, the model flows from a UV completed
theory to AdS2 in the IR. The UV geometry regulates the backreaction and allows
finite energy states. It turns out that the low energy (IR) dynamics is universal
and can be described by a cutoff AdS2. The cutoff not only regulates the theory
but also introduces interesting dynamics.

We will focus on a simple dilaton gravity model, the AP model [1]. To study the
classical solution of (14), we can ignore the topological term and boundary term
for a moment but consider a more general dilaton gravity theory whose action is
given by

S = Sg,Φ + Smatter,

Sg,Φ =
1

16πG

∫
d2x
√
−g
(
Φ2R− U(Φ)

)
,

Smatter =
1

32πG

∫
d2x
√
−gΩ(Φ)(∇f)2, (23)

where U(Φ) is the potential of the dilaton. The 2D metric in the conformal gauge
can always be written as

ds2 = −e2w(x+,x−)dx+dx−, (24)
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the light-cone coordinates are defined as x± = t± z. Then the equations of motion
are given by

2∂+(e−2w∂−e
2w)− 1

2
e2w∂Φ2U(Φ) = (∂Φ2Ω)∂+f∂−f,

∂+(Ω∂−f) + ∂−(Ω∂+f) = 0,

4∂+∂−Φ2 − e2wU(Φ) = 0,

−e2w∂+(e−2w∂+Φ2) =
Ω

2
∂+f∂+f, (25)

−e2w∂−(e−2w∂−Φ2) =
Ω

2
∂−f∂−f. (26)

The first equation determines the metric, the second equation is the equation of
motion of the matter, the third equation is the equation of motion of the dilaton
and last two are constrains of the dilaton Φ. The AP model is a special case of the
general dilaton model which corresponds the situation where

U(Φ) = 2− 2Φ2, Ω(Φ) = 1. (27)

In this setting, the equation of motion simplifies to

4∂+∂−w + e2w = 0, (28)

∂+∂−f = 0, (29)

2∂+∂−Φ2 + e2w(Φ2 − 1) = 0, (30)

−e2w∂+(e−2w∂+Φ2) =
1

2
∂+f∂−f, (31)

−e2w∂−(e−2w∂−Φ2) =
1

2
∂−f∂−f. (32)

Solving (28) we can determine the metric and solving (30) we can determine the
dilaton. The last two equations can be thought of as the addition constraints for
matters to couple with dilaton gravity. There are three static solutions

e2w =
1

z2
,

1

sinh2 z
,

1

sin2 z
, (33)

corresponding to the Poincare path of AdS2, a black hole with horizon at z = ∞
and the global AdS2. Different solutions are related by conformal transformations.
Note that the metric does not depend on the matter field at all since there is no
local gravitational degrees of freedom. So let us only focus on the Poincare solution
and consider the vacuum solution. Given

e2w =
4

(x+ − x−)2
, (34)

one can solve the dilaton

Φ2 = 1 +
a+ b t+ c(−t2 + z2)

z
(35)
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which depends on three real parameters. The metric is invariant under the SL(2, R)
transformation, so not all the three parameters are physical. For example we can
set them to be

a = 1/2, b = 0, c =
µ

2
, Φ2 = 1 +

1− µx+x−

x+ − x−
, µ > 0. (36)

Then by performing a coordinate transformation

x± = tanX± (37)

we can get the global AdS2

e2ω =
4

sin2(X+ −X−)
, Φ2 = 1 +

cosX+ cosX−

sin(X+ −X−)
. (38)

Alternatively by performing a coordinate transformation

x± =
1
√
µ

tanh(
√
µ(T ± Z)), (39)

we can get the black hole (Rindler patch) metric

ds2 =
4µ

sinh2(2
√
µZ)

(−dT 2 + dZ2),

Φ2 = 1 +
√
µ coth(2

√
µZ). (40)

The place of the horizon is at

X± → ±∞, x± → ±µ−1/2 (41)

and the singularity where Φ2 = 0 is at

1 +
1− µx+x−

x+ − x−
= 0 → (x+ + 1/µ)(x− − 1/µ) = (µ− 1)/µ2. (42)

To derive the temperature of this black hole easily, we can go to the Schwarzschild
metric by performing another coordinate transformation.

Z =
1

2
√
µ

arcCoth

(
ρ
√
µ

)
(43)

Then the solution reads

ds2 = −4(ρ2 − µ)dt2 +
dρ2

ρ2 − µ
, Φ2 = 1 + ρ. (44)

The Hawking temperature can be evaluated as

TH =
1

4π
∂ρ

√
−gtt
gρρ

∣∣∣∣∣
ρ=
√
µ

=

√
µ

π
. (45)
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Figure 1: different coordinates

The Bekenstein-Hawking entropy is given by

SBH =
A

4Geff

∣∣∣∣
Z→∞

=
Φ2

4G

∣∣∣∣
ρ=
√
µ

=
1 + πTH

4G
. (46)

If there are matter fields such that T++ and T−− are not zero T±± = ∂±f∂±f/16πG.
Then the metric is still the same while the dilaton will be given by

Φ2 =
M

x+ − x−
, M = M0 − I+ + I− (47)

where M0 is the sourceless solution and

I±(x+, x−) = 8πGN

∫ x±

−∞
dx′
±

(x′
± − x∓)(x′

± − x±)T±±(x′
±

). (48)

One can check (47) with (48) satisfy (25) and (26). For example, let us consider a
pulse of energy E,

T−− = Eδ(x−) (49)

then

I− = 8πGE

∫ x−

−∞
dx′
−

(x′
− − x+)(x′

− − x−)δ(x′
−

) = 0, when x− < 0, = 8πGEx+x−, when x− < 0

= 8πGEx+x−Θ(x−) (50)

Comparing with (36), we find that µ = 8πGE.
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3.1 Backreaction problem and scalar field holography

Given this explicit model, we can discuss the backreaction problem more concretely.
Consider the equation of motion

−e2w∂+(e−2w∂+Φ2) =
1

2
∂+f∂+f, (51)

We can consider this equation in an asymptotically AdS2 (global) metric and inte-
grate x+ along the null line x− = 0:∫ π

0
dx+e−2w 1

2
∂+f∂−f =

[
e−2w∂+Φ2

]
|x+→0 −

[
e−2w∂+Φ2

]
|x+→π > 0. (52)

The integrand ∂+f∂+f is T++ so it is positive classically. Therefore the integral
must give some finite positive results. However on the right hand side, if we assume
an asymptotically AdS2 space, on the line x− = 0, it means

e2w ∼ 1

sin2 x+
∼ 1

x+2 x+ → 0,

∼ 1

(x+ − π)2 x+ → π. (53)

The non-zero result of the right hand side implies

Φ2|x+=0 ∼
1

x+
, or Φ2|x+=π ∼

1

x+ − π
. (54)

At least at one of the boundary, the dilaton will diverge. But recall the dilaton
is actually related to the radius of S2. So the the nonzero matter stress tensor
destroys the assumed asymptotic region. Therefore to have a well defined theory
in the IR we can regulate the action by adding a UV cut-off at z = ε. So the
boundary terms become

Sbdy =
1

8πG

∫
dt

(
(−Φ2∂zw)−

∫
dze2w +

1

4
f∂zf

)
, e2w =

4

z2
,

=
1

8πG

∫
dt

(
−4

ε
+

Φ2

ε
+

1

4
f∂zf

)
(55)

recalling the full action can be written as

ds2 = −e2wdx+dx−

S =
1

8πG

∫
dtdz

(
Φ2(∂2

t − ∂2
z )ω − e2w(1− Φ2)− 1

4
f∂t∂tf +

1

4
f∂z∂zf

)
+ . . . .(56)

The divergent pieces in (55) can be cancelled by adding proper counterterms.
Therefore the regularized boundary action (which is also the generating function
of the boundary field theory)is simply

Sren =
1

32πG

∫
dtf∂zf |z→0. (57)
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At the boundary, the field is not vanishing due to its nonnormalizable mode which
gives rise to the boundary source term

lim
z→0

f(z, t) = j(t) (58)

such that

f(z, t) =
1

2π

∫
dt′
(

1

(z − 0) + (t− t′)
+

1

(z − 0)− (t− t′)

)
j(t′), (59)

lim
z→0

∂zf(z, t) = −
∫
dt′

P

(t− t′)2
j(t′) (60)

and

Sren = − 1

32πG

∫
dtdt′

P

(t− t′)2
j(t)j(t′), (61)

where P means to take the principle part. It can not be correct since introducing
a cut-off will break the conformal symmetry. Indeed the naive calculation here
completely ignores the backreaction which are not negligible as we shown. Because
of the backreaction the bulk time coordinate t should not be identified with the
boundary time coordinate t̃ but we can perform a coordinate transformation to
”cancel” the backreaction, see Fig. (??)

Figure 2: backreaction

. To coordinate transformation is derived by comparing the value of dilaton
(which is a scalar) at the cut-off. From the expression (47) of dilaton with matter
field, we find the relation

z̃(t̃)

z(t)
|bdy =

M0

M
|bdy, (62)

where z̃(t̃)|bdy or z(t)|bdy define the original and deformed cut-off boundary con-
tours. The let u to be the parameter of the boundary contour the induced metric
should satisfy the cut-off condition

guu =
(∂uz)

2 + (∂ut)
2

z2
=

1

ε2
, → z = ε∂ut. (63)
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Therefore the relation (62) is equivalent to

z̃

z
=
∂ut̃

∂ut
=
∂t̃

∂t
=

M0

M(t)
. (64)

Integrating (64) we can find

t = t̃+ γ(t̃) +O(j4), (65)

where the expression of γ is not that important for our discussion and can be found
in the original paper. Considering this correction, the generating function becomes

Sren = − 1

32πG

∫
dt̃dt̃′

P

(t̃− t̃′)2
(1 + ∂tγ(t̃) + ∂t′γ(t̃′)− 2

γ(t̃)− γ(t̃′)

t̃− t̃′
)j(t̃)j(t̃′) + . . .(66)

Here I only want to illustrate the the original idea of [1] so some of calculation
are not explicit. Below we will derive this generating function explicitly from the
conformal symmetry breaking directly.

4 Conformal Symmetry and its breaking in

two dimensional nearly anti-de-Sitter space

The main reference is [2]. The key idea is that the symmetry and the symmetry
breaking govern the AdS2 physics. Let us consider the Euclidean JT gravity with
action (which is different from AP’s action by a constant and Φ2 is changed to φ)

IEJT = − φ0

16πG

(∫
M
d2x
√
hR+ 2

∫
∂M

K

)
− 1

16πG

(∫
M
d2x
√
hφ(R+ 2) + 2

∫
∂M

φbK

)
(67)

The Euclidean AdS2 is just the hyperbolic disk: [INSERT Fig. 23]

ds2 =
dt2 + dz2

z2
, t ∈ [−∞,∞], Poincare (68)

= dρ2 + sinh2 ρdτ2, τ ∈ (0, 2π), Rindler, (69)

both of these two coordinates will cover the whole disk. For convenience, let us
consider the Poincare coordinate and as before introduce a cut-off boundary which
is described by the contour (t(u), z(u)) or (t(u), ε∂ut(u). At the boundary the
dilaton diverges as

φb =
φr(u)

ε
, (70)

where φr(u) can be thought of as a new coupling constant (of the boundary theory).
We have seen that t(u) characterizes the cut-off so it also characterizes the solution
space. However the global translation and rotations (SL(2, R) ) keep t(u) invariant
so there is a symmetry on t(u):

t(u)→ at(u) + b

ct(u) + d
, ad− bc = 1. (71)
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Without the cut-off, the Einstein-Hilbert action in the hyperbolic space has the
t(u) reparameterization symmetry. Introducing cut-off spontaneously break the
reparameterization symmetry down to SL(2, R). Therefore we can think of the
dynamics of t(u) describes the Goldstone modes associated with the symmetry
breaking. So the boundary theory should describe the coset Diff(S1)/SL(2, R)
which is known as the Schwarzian theory. Let us now derive it from the action
(68). The first term in (68) is topological so let us focus on the second term. The
dilaton φ can be integrated out directly which simply fixes R = −2 and what is
remaining is

Ibdy = − 1

8πG

∫
∂M

φnK = − 1

8πG

∫
du
√
guu

φr
ε
K = − 1

8πG

∫
du
φr
ε2
K. (72)

The extrinsic curvature is defined by K = gµν∇µnν . The normal vector nµ is
determined though the conditions

Tµnµ = 0, nµnµ = 1, Tµ = (∂µt, ∂µz). (73)

The solution is easy to obtain

nµ =
1

z
√

(∂ut)2 + (∂uz)2
(−∂uz, ∂ut). (74)

Therefore the extrinsic curvature can be evaluated as

K = (
TµT ν

T 2
+ nµnν)∇µnν =

T ν

T 2
∇Tnν

=
T ν

T 2
(∂unν − ΓρµνnρT

µ) =
t′(t′2 + z′2 + zz′′ − zz′t′′)

(t′2 + z′2)3/2
(75)

where we have used the non-vanishing connections

−Γttz = −Γtzt = Γztt = Γztz =
1

z
, (76)

and denoted ∂ut as t′. Next using the identity z = εt′ one can find

K = 1 + ε2Sch(t, u), Sch(t, u) =
2t′t′′′ − 3t′′2

2t′2
+O(ε3) (77)

(Note that when u = t, the Schwarzian term vanishes.) Substituting into the
boundary action and dropping the divergent 1/ε2 term we end up with the final
boundary effective action

Ibdy = − 1

8πG

∫
duφr(u)Sch(t, u). (78)

The equation of motion can be derived from δIbdy/δu, the result is

[
1

t′

(
(t′φr)

′

t′

)′
]′ = 0. (79)
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Recall that in the vacuum the dilaton is given by

φ =
a+ bt+ c(t2 + z2)

z
(80)

so approaching to boundary it should be

φr(u) =
a+ bt(u) + ct(u)2

t′(u)
. (81)

So can check indeed this is the solution of (79). We can also absorb φr into the
definition u to simplify the action further by introducing

dũ =
φ̄rdu

φr(u)
, (82)

where φ̄r is some constant then we have derived the Schwarzian theory as promised

Ibdy = −C
∫
duSch(t, u). (83)

The solution of the theory is

t(u) = tan
πu

β
(84)

so the period of u is β (note that t(u) is equivalent to −t(u)). Identifying u as
the thermal circle of the field theory, we can derive free energy and entropy of the
theory

F = logZ = −Ibdy = 2π2C

β
, S = (1− β∂β) logZ = S0 + 4π2C

β
, (85)

which is equal to (46) (up to redefinition of C). It means that the Schwarzian
action indeed captures the near extremal physics. To make direct connection to
the black hole solution (Rindler patch), we introduce the Rindler circle coordinate

tan
τ

2
= t. (86)

In terms of τ the action is given by

Ibdy = −C
∫
du[Sch(τ, u) +

1

2
τ ′

2
] (87)

which will also be derived directly by starting with Rindler metric of AdS2 and
compute the extrinsic curvature as we did above. In other words, τ describes the
boundary fluctuation of the black hole solution (Rindler patch). We have found
the classical solution this boundary theory, how about the quantization, or more
explicitly can we compute the full partition function

ZSch =

∫
dµ(τ)

SL(2, R)
e−ISch , (88)
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where dµ(τ) is some proper measure. Using the method of localization, it is proved
in [4] the theory is 1-loop exact so we only need to study the linearized theory

τ(u) = u+ ε(u). (89)

The measure is still non-trivial so we will postpone the derivation. The 1-loop
effective action is relative simple. Substituting the expansion directly into (87) and
keep the terms up to the second order of ε gives the effective Lagrangian of ε

L =
1

2
+ (ε′′ + ε′) +

1

2
ε′

2 − 1

2
ε′′

2
. (90)

Dropping the constant and total derivative term we end up the effective action

Ieff =
C

2

∫ 2π

0
(ε′

2 − ε′′2). (91)

We can perform Fourier transformation

ε =
∑

εne
inu (92)

such that

Ieff =
C

2

∑
n

(n4 − n2)εnε−n (93)

after integrating over u. There are zero modes n = 0,±1 which correspond to the
SL(2, R) symmetry. Given this effective action we can compute the correlation
function for example

〈ε(u)ε(0)〉 =
2

C

∑
n6=0,±1

einu

n2(n2 − 1)
=

2

C

∮
C

ds

e2πis − 1

eisu

s2(s2 − 1)
, (94)

because the integrand vanishes along the contour at infinity, the contour integral
is simply given by the residues at the three poles s = 0,±1. The result is

2

C

i

2π

(
(π − u) sinu+

5

2
cosu+ 1− πu− π2

3
− u2

2

)
(95)

We have shown the subtlety to couple JT gravity to matter field. However it is
very simple to couple Schwarzian theory to a matter field with action

Imatter =
1

2

∫
d2x
√
h(hab∂aχ∂bχ+m2χ2), (96)

and the following asymptotic behavior

χ(z, t) = z1−∆χ̃r(t) + . . . , z → 0,

∆ =
1

2

(
1 +

√
1 + 4m2

)
(97)
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Figure 3: integral contour

As before, naively we will get the generating function

Igen = −D
∫
dtdt′

(̃χ)r(t)χ̃r(t
′)

|t− t′|2∆
. (98)

Taking the boundary dynamics account we should expand the matter field accord-
ing to the cut-off curve

χ(z, t) = z(u)1−∆χ̃r(t(u)) = ε1−∆t′
1−∆

χ̃r(t(u)) ≡ ε1−∆χr(u). (99)

Therefore the generating function is

Igen = −D
∫
dudu′[

t′(u)t′(u′)

(t(u)− t(u′)2)
]∆χr(u)χr(u

′), (100)

where we can expand the kernel as with respect to ε by expanding t(u) around the
classical solution as

t(u) = tan
u+ ε(u)

2
→

[
t′(u)t′(u′)

(t(u)− t(u′)2)
]∆ =

1

(2 sin u12
2 )2∆

[1 +B(u1, u2) + C(u1, u2) + ε3] (101)

where B and C are linear and quadratic terms of ε. Therefore the generating
function is given by

− log〈e−Igen〉 = D

∫
dudu′

1

(2 sin u12
2 )2∆

[1 + 〈C〉]χ(u)χr(u
′)

+
D2

2

∫
du1du2du3du4

χ1χ2χ3χ4

(2 sin u12
2 )2∆(2 sin u34

2 )2∆
〈B(u1, u2)B(u3, u4)〉+O(ε3)(102)

where 〈C〉 and 〈BB〉 can be computed in the linearized theory of Schwarzian. Some
comments are in orders. We should notice that the Schwarzian theory is derived
from the Euclidean Poincare AdS2.

16



5 Quantization of JT gravity

There are many existing approaches of quantization of JT gravity (or Schwarzian
theory):

1. Canonical quantization (dimension of phase space is 2) [3]

2. Fermionic localization (Schwarzian theory is 1-loop exact) [4]

3. Equivalence between the Schwarzian theory and a theory of a particle in a
magnetic field moving in hyperbolic space [5]

4. Using SL(2, R) BF (1st order formalism) theory [6]

5. JT gravity as matrix model [7]

5.1 JT gravity as a matrix integral

First let us describe the method of [7]. This approach is intuitive. The partition
function is given by a path integral over all the geometries and topologies:

Z =
∑

topology

∫
Dgµν
Diff

(δ(R+ 2))
Dτ

SL(2, R)
e−IJT (103)

e−IJT = (e−S0)2g−2+ne
∑n
i=1

∫ βi
0 duiSch(τi,ui), (104)

so like string theory we can rewrite the partition as summation of amplitudes
defined on each topology

Z =
∑
g,n

Zg,n(β1, . . . , βn)(e−S0)2g−2+n, (105)

each amplitude can be denoted by a spacetime diagram for example:

Figure 4: 〈Z(β1)Z(β2)Z(β2)〉

Fixing the number of boundaries n and summing over g give the ”correlation
function” of Z(βi) for example

〈Z(β1)Z(β2)Z(β3)〉 =
∑
g

Zg,3(β1, β2, β3) (106)
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which can be mapped to correlation function in a random matrix model. We can
always cut out one boundary with a geodesic with length b, then the geometry of
this resulting boundary is Hyperbolic space with a hole inside which we will call it
a trumpet geometry. Therefore the isometry of geometry space is not SL(2, R) but
U(1) and the boundary theory now should describe the coset Diff(S1)/U(1) which
only differs from the Schwarzian theory by the path integral measure. Integrating
out the dilaton will fix R = −2 so the bulk geometry must be hyperbolic then bulk
integral only computes the volume of it. The volume is called the Weil-Peterson
volume. In summary the amplitude is equal to

Zg,n(β1, β2, . . . , βn) =

∫ ∞
0

b1db1· · ·
∫ ∞

0
bndbnVg,n(b1, . . . , bn)Ztrumpet

Sch (β1, b1) . . . Ztrumpet
Sch (βn, bn)(107)

The details we have omitted are the derivation of the measure bdb of Weil-Peterson
volume and the derivation of the trumpet partition function Ztrumpet

Sch (β, b). To
derive them we have to use the 1st order formalism of JT gravity and rewrite is as
a BF gauge theory then the correct measure can be computed from the symplectic
form of the gauge theory. Before we move to canonical quantization let us make
comments about AdS3 gravity theory. Now the boundary is a 2D surface. If the
2D surface is the complex plane or torus then the boundary theory should describe
the coset Diff(S1) × Diff(S1)/SL(2, R) × SL(2, R). It is kind of two copies of
Schwarzian theories, actually the theory is the Alekseev-Shatashvili theory. We also
need the theory to describe the 3D solid trumpet which should describe Diff(S1)×
Diff(S1)/U(1)×U(1). But there is no good structure to describe the bulk integral
as the Weil-Peterson volume and it seems not clear what is the proper measure like
bdb.

5.2 Canonical quantization of JT gravity

Next we follow [3] to demonstrate the canonical quantization of JT gravity. Again
we need to fix a patch of AdS2, for our interests the patch is the two-sided black
hole as shown in Fig.

Figure 5: Fix background
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The metric on each side is given by (40) (The constant 1 is dropped in the
dilaton),

ds2 =
4µ

sinh2(2
√
µz)

(−dt2 + dz2),

Φ2 =
√
µ coth(2

√
µz). (108)

To do canonical quantization, we need to derive the Hamiltonian which can be
identified with the boundary stress tensor

H = 〈Ttt〉 = lim
ε→0

−2ε√
−γ

δS

δγtt
(109)

where γµν is the boundary metric γtt = −e2ω. The relevant term for computing
the variation in the action S is

S =
1

16πG

∫
d2x
√
−gΦ2R− 1

8πG

∫
dt
√
−γΦ2K, K = γµν∇µnν . (110)

If Φ2 is a constant then δS/δγab will lead to the usual result of general relativity

Kµν −Kγµν = 0. (111)

The non-vanishing term comes from the variation δ∂zgtt in the bulk since∫
d2xf(x)δ∂zgtt →

∫
d2x∂z(f(x)δgtt) ∼

∫
dtf(x)δγtt. (112)

and the terms from the counterterm which are supposed to cancel the divergence:

Sct =

∫
dt
√
−γ
(

1

8πG
(−Φ2)

)
(113)

Considering the identity

√
ggABδRAB = ∂C(

√
ggABδΓCAB)− ∂B(

√
ggABδΓCAC) (114)

Integrating by parts leads to

∂BΦ2√ggABδΓCAC − ∂CΦ2(
√
ggABδΓCAB), (115)

the component will survive at the boundary is gtt and only non-vanishing term
which contain ∂zgtt is

∂zΦ
2√gγttγzzδ∂zgtt. (116)

Therefore we have

δS

δγtt
=

1

16πG
∂zΦ

2γttγzz
√
g,

δS

δγtt
=
√
gγtt∂zΦ

2 =
1

16πG
e2w∂zΦ

2 (117)
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and the unnormalized hamiltonian is

ε

8πG
ew∂zΦ

2 + εe2w Φ2

8πG
. (118)

The asymptotic expansions of Φ2 and ew are

ew =
1

z
− 2u

3
+O(z), Φ2 =

1

2z
+

2uz

3
+O(z2) (119)

so the finite piece of (118) is the final hamiltonian is

H = HL +HR = 2
µ

8πG
≡ 2

Φ2
h

Φb
, Φb = 8πG. (120)

In the Hamiltonian (120), there is only one dynamical variable Φh. There must
be another variable which conjugate to it. Intuitively the conjugation of energy
should the related to time so the guess would be

δ = tL + tR (121)

which measures the relative time shift between the two boundaries. Thus we arrived
at the 2D Hamiltonian system:

δ̇ = 1, Ḣ = Φ̇h = 0, ω = dδ ∧ dH. (122)

However this Hamiltonian does not lead to a sensible Schrodinger equation because
(120) only depends on Φh but not its conjugate. So we can perform a canonical
transformation. The variable which has geometric meaning is the geodesic length
between the two boundaries with tL = tR. To compute this length, we need to
introduce the static coordinates

ds2 = −(1 + x2)dτ2 +
dx2

1 + x2
, (123)

Φ = Φh

√
1 + x2 cos τ (124)

which is related to the Schwarzschild coordinate (87) though√
1 + x2 cos τ = ρ/

√
µ√

1 + x2 sin τ =
√

(ρ/
√
µ)2 − 1 sinh(2

√
µt)

x =
√

(ρ/
√
µ)2 − 1 cosh(2

√
µt) (125)

In particular, the bulk time τ is related to boundary time via

x, ρ→∞, cos τ =
1

cosh(2
√
µt)

=
1

cosh(
√
µδ)

. (126)

Therefore the geodesic length is given by

L0 = 2

∫ xc

0

dx√
1 + x2

= 2Arc sinh(xc) = 2 log(2xc), xc →∞ (127)
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But the distance is divergent so, we define the renormalized geodesic length

L ≡ L0 − 2 log(2Φ |bdy) = 2 log
xc
ρc

= 2 log
cosh(

√
µδ)

√
µ

= 2 log

(
cosh(

√
φbH

2
δ)

)
− log

φbH

2
. (128)

Its conjugation is

P =

√
2H

φb
tanh

(√
Hφb

2
δ

)
. (129)

It is easy to check that

∂L

∂δ

∂P

∂H
− ∂L

∂H

∂P

∂δ
= 1. (130)

Now we can solve the Hamiltonian in terms of new canonical coordinates

H =
P 2

2φb
+

2

φb
e−L, (131)

then the energy eigenstates 〈l|E〉 = ψE should be determined from the Schrodinger
equation

− 1

2φb
ψ′′E(L) +

1

φb
e−LψE(L) = EψE(L), (132)

it just describes the mechanics of a non-relativistic particle moving in an exponen-
tial potential. The solutions are given by the modified Bessel functions and the
complete basis of the wavefunction is

ψE(L) = 〈l|E〉 = 4K2i
√

2E(4e−l/2), ρ(E) =
1

2π2
sinh(2π

√
2E) (133)

satisfying ∫ ∞
−∞

dl〈E|l〉〈l|E′〉 =
δ(E − E′)
ρ(E)

,∫ E

0
dEρ(E)〈l|E〉〈E|l′〉 = δ(l − l′) (134)

where ρ(E) is the density of state. Even though we have quantized JT gravity from
the perspective of a non-relativistic quantum particle, but JT is a gravity theory
we also want to know the relation between the geometry and quantum states.
In particular, we may want to do how the Euclidean path integral relates to the
quantum states.

The idea is that since the geometry is a two-sided black hole, then the Euclidean
path integral should prepare the thermofield double state such that

Tr[e−βH ] = Tr[e−β(HL+HR)]〈TFDβ|TFDβ〉. (135)
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From the general AdS/CFT dictionary we expect the thermofield double state
is dual to the Hartle-Hawking state HHβ. Therefore the wavefunction 〈l|HHβ〉
equals to the Euclidean path integral over geometries with the topology of a disk
and boundaries consisting of an asympotically AdS portion of length β/2 and a
geodesic of length l:

Figure 6: HH state

ψD,β/2(l) = 〈l|HHβ〉 =

∫ ∞
0

dEρ(E)e−
β
2
EψE(l) (136)

The overlap of Hartile-Hawking wavefunction computes the disk partition function
as expected

〈HHβ|HHβ〉 =

∫ ∞
−∞

dlψ?D,β/2ψD,β/2. (137)

From the point of view of quantum gravity, we may define a boundary operator

(ψ̂D,β/2, ψ̂D,β/2),

|HHβ〉 = ψ̂D,β/2|HH〉 ≡ |ψD,β/2〉. (138)

then (137) simply computes the expectation value of this operator. Apart from
the disk geometry, there is also the trumpet geometry. The trumpet has another
boundary which is closed geodesic with length b, we may also associate a operator
b̂ to it. Therefore, the path integral over the trumpet geometry should be equal to

〈HH|(ψ̂D,β/2, ψ̂D,β/2)b̂|HH〉 (139)

which can be rewritten as

〈ψD,β/2|ψTr,β/2,b〉, |ψTr,β/2,b〉 = ψ̂D,β/2b̂|HH〉, (140)
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Figure 7: trumpet

on the |l〉 basis, the trumpet wavefunction is given by

〈l|ψTr,β/2,b〉 =

∫ ∞
0

dE
cos(b

√
2E)

π
√

2E
e−

β
2
E〈l|E〉. (141)

The missing ingredient is how to understand Weil-Peterson volume from the point
of view quantum states. Schematically the volume Vg,3(b1, b2, b3) can be written as

〈HH|b̂1b̂2b̂3|HH〉g, (142)

which does not depend on the asymptotical boundary at all so we expect it should
be described by 2D topological gravity only and we know it is corresponding to
the integral of moduli space. A possible approach to study it explicitly is using
the topological BF gauge theory, where the moduli space of gravitational theory
is related to the moduli space of flat connection of gauge theory. However how
to do the canonical quantization for JT gravity with more than two asymptotical
boundaries and taking other possible topology into account directly as far as I know
has not been well studied. We finish this section with some comments:

1. The eigenstates from the canonical quantization do not factorize as HL⊗HR.
In particular the quantum theory is not equal to two copies of Schwarzian
theories as we naively expected.

2. The matrix integral quantization of JT gravity suggests the dual theory of
JT gravity is not a explicit theory but an ensemble average of a family of
theories.

3. The wormholes (configurations with more than one asymptotical boundaries)
are not classical solutions of JT gravity so they are not saddle points of the
Euclidean path integral. Should we include them into the path integral is
still a open problem. Including them may cause the factorization puzzle:
〈Z〉2 6= 〈ZZ〉 which prefers the ensemble average interpretation i.e. the Eu-
clidean path integral does not compute the exact values but some average
over an ensemble. But the ensemble average interpretation is in tension with
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the AdS/CFT . Another possibility is that all the wormhole contributions
will cancel each other. This is also unlikely because we have seen that the
wormhole needs to be included in the computation of some physical quantities.
Perhaps they can be understood as complex saddles or constrained instantons.
We need more thoughts to understand the so called Wormhole-paradigm.

6 Information paradox in JT gravity and Is-

land formula

For a pedagogical review without technical details see [8] where the information
paradox and island formula are discussed in general. Here we focus on the toy
model: JT gravity. First let us formula a version of information paradox in JT
gravity. The main reference is [9]. The key idea is that AdS2 black hole is eter-
nal, in other words, it does not evaporate so we couple the black hole at nonzero
temperature to a bath which is described by a non-gravitional flat spacetime.

The whole geometry is shown in Fig. (6)

Figure 8: whole geometry

The global coordinate is w± which are related to left and right-coordinates via

w± = ±e±2πy±R/β, w± = ∓e∓2πy±L /β,

y±L = t∓ z, y±R = t± z. (143)

Each side is also divided into two regions: AdS and flat bath and the corresponding
metrics are (focus on the right side)

ds2
ads = −4π2

β2

dy+dy−

sinh2 π
β (y− − y+)

, ds2
bath = − 1

ε2
dy+dy− (144)

where we have assumed the AdS has a cut-off at z = −1
ε and the scale factor 1/ε2

in the ds2
bath guarantees that these two metrics agree at the cut-off. The dilaton
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only exists in the AdS region and has the profile (we have restored the extremal
term φ0)3

φ = φ0 +
2πφr
β

1

tanh π
β (y− − y+)

= φ0 +
2πφr
β

1− w+w−

1 + w+w−
. (145)

For simplicity we assume the matter field is described by a CFT and the Hawking
modes are collected in the bath (because they contain the global infinities) so
we would like to compute the entanglement entropy S(−∞,−b)∪(b,∞)associated with
interval (−∞,−b) ∪ (b,∞).

Figure 9: no island

Assuming the state on the whole Cauchy surface is pure then S(−∞,−b)∪(b,∞) =
S(−b,b) which is just the entanglement entropy of a single interval. The general
formula is 4

S(x1,x2) =
c

6
log

(
−(ω+

12ω
−
12)

Ω1Ω2

)
(146)

where the conformal factor can be computed through the relations (143)

(Ω1Ω2) =
√
∂y+w

+
1 ∂y−w

−
1 ∂y+w

+
2 ∂y−w

−
2 =

(
2π

β

)2

e
4π
β
z

(147)

since the w1 and w2 are in the bath region where y are the proper coordinates.
Therefore the entanglement entropy is

S(−b,b) =
c

6
log

(e
− 2π
β
y+L + e

2π
β
y+R )(e

2π
β
y−L + e

− 2π
β
y−R )(

2π
β

)2
e

4π
β
z

 =
c

3
log

(
β

π
cosh

2πt

β

)
(148)

and the late time t >> β it grows linearly in time

S(−b,b) ∼
c

3

2πt

β
. (149)

3Note that z < 0 in AdS comparing with (108)
4The UV cut-off factor ε is dropped.
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However the black hole only has finite amount of degrees of freedom to entangle
with the matter field because of the Bekenstein-Hawking entropy bound 2SβBH =

2(φ0 + 2πφr
β ). Therefore the linear growth of the entanglement entropy in the late

time is contradictory. Where is our mistake? The only possible mistake is the
entropy formula (146) we used. When we derive this formula with replica trick
we fix the background and even in the replica geometry we only consider one
particular background. However if the background is dynamical, the correct semi-
classical approximation should include all the possible saddle geometries (perhaps
with complex saddles and constrained instantons). It was proposed in [12, 13, 14],
the correct formula of the entropy of Hawking radiation is

S[Rad] = min{ext[S[Rad] ∪ I +
Area[∂I]

4GN
]} (150)

where I is called island and the extremal ∂I ≡ Σ is a co-dimensional two surface,
known as the Quantum Extremal Surface (QES). In the context of JT gravity, the
QES is just a point and the Area[∂I] is the value of the dilaton at the QES. Let
us see how this formula resolves the information paradox first then ”derive” this
formula from different perspectives.

For simplicity we set b = 0, therefore the two points p2 and p4 in the bath are
at

w±2 = w∓4 = ±e±2πt/β. (151)

Assume that there is an island in AdS with QES at p1 and p3 at w±1 = w∓3 as
shown in Fig. (8)

Figure 10: with island

Now we need compute the entanglement entropy associated with two intervals.
In the late time, p2 and p4 approach∞ then we expect that these two intervals are
very far way so the contribution from the left and the contribution from the right
decouple such that

S[Rad] = 2×
(
φ(w±1 )

4GN
+
c

6
log(
−w2

12

Ω1Ω2
)

)
, (152)
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where p1 is in the AdS and p2 is in the bath so the conformal factor is

Ω−2
1 =

4

(1 + w+
1 w
−
1 )2

, Ω−2
2 =

(
β

2π

)2

. (153)

Therefore the entanglement entropy is

S[Rad] =
φ0

2Gn
+
c

3
log

β

π
+
c

3
log

−w2
12

1 + w+
1 w
−
1

+ a
1− w+

1 w
−
1

1 + w+
1 w
−
1

, (154)

a ≡ π

β

φr
GN

. (155)

The extremal conditions are

∂S/∂w+
1 = ∂S/∂w−1 = 0. (156)

These are third order algebraic equations then solutions are easy to obtain but
somehow complicated. However in the semi-classical limit GN → 0 the solutions
are simplified. There are three possible solutions

1. w±1 = w±2 , (157)

2. w±1 =
6a

c

1

w∓2
, (158)

3. w±1 = − c

6a

1

w∓2
, (159)

(157) is just the trivial solution without island. (158) is not acceptable because it
implies the p1 and p2 are on the different side but we have assumed that p1 and p2

are both in the right side. One can also check that (158) leads to a complex entropy
so the solution does not correspond to a QES. The solution (159) is physical and
corresponds to a new QES. Substituting (159) into (154) gives

S[Rad] = 2× (
φ0

4GN
+

2π

β

φr
4GN

) +
c

3
log

β

π
= 2SBH +

c

3
log

β

π
(160)

which is a constant. Note that island formula also gives a quantum correction of
order O(G0

N ).

7 Replica wormholes

To describe replica wormholes, let us consider the toy model: JT gravity with an
end of world brane (EOW brane). To further simplify the model, we do not treat
EOW dynamically. The only role they play is to provide new boundary conditions.
We mainly follow [10].

Recall that JT gravity originally has the asymptotical boundary operator

(ψ̂D,β/2, ψ̂D,β/2), (161)
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which corresponds to a loop with renormalized length β. The EOW brane intro-
duces new boundary operator

(ψi, ψj) (162)

which corresponds to an interval and Euclidean path integral computes the inner
product

〈HH|(ψi, ψj)|HH〉
〈HH|HH〉

= 〈ψi|ψj〉 = δij , i, j = 1, 2, . . . , k. (163)

Figure 11: new boundary operator

To model an evaporating black hole, we use the brane state |ψi〉 to describe
the black hole quantum state (which is also the state of the partner of Hawking
radiation) and couple to it with auxiliary system R which models the Hawking
radiation. So the state of the whole system is

|Ψ〉 =
1√
k

k∑
i=1

|ψi〉|i〉R. (164)

We are interested in the entanglement entropy of the radiation so we consider the
reduced density matrix∑

k

〈ψk|(
1

k

∑
i,j

|i〉〈j| ⊗ |ψi〉〈ψj |)|ψk〉 = ρR,

ρR =
1

k

k∑
i,j=1

|j〉〈i|R〈ψi|ψj〉. (165)

If there is no island the entropy is log k while the new QES should be close to the
horizon and gives the entropy SBH so we expect the entropy of the radiation is

S(R) = min{log k, SBH}. (166)

Again the entropy will be computed using the replica trick

SR = −Tr(ρR log ρR) = − lim
n→1

1

n− 1
log Tr(ρnR) (167)
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and as a simple illustration of replica wormhole we will consider the simple quantity:
the purity Tr(ρ2

R). The key point is that we should use Euclidean path integral to
compute it directly instead of computing ρR first. Using (162) we can write the
reduced density matrix and its square as

ρR =
1

k

k∑
i,j=1

|j〉〈i|〈HH|(ψi, ψj)|HH〉〈HH|HH〉−1, (168)

ρ2
R =

1

k2

∑
i,j,k

|i〉〈k||k〉〈j|〈HH|(ψi, ψk)(ψk, ψj)|HH〉〈HH|HH〉−2. (169)

There are four intervals so there are two possible ways to connect them to form
closed boundary so

〈HH|(ψi, ψk)(ψk, ψj)|HH〉 = δikδkj〈HH|HH〉2 + δkkδij〈HH|HH〉. (170)

Therefore the purity is

Tr(ρ2
R) =

1

k2

∑
i,j,k

δijδkk(Z
2
0δikδjk + Z0δkkδij)Z

−2
0 =

1

k
+

1

Z0
∼ 1

k
+ e−SBH , (171)

where Z0 ≡ 〈HH|HH〉. If k is small then the first them (disconnected geometry)
dominates while if k is very larger then the second term (wormhole geometry)
dominates. However our calculation seems to be contradictory. The reduced density
matrix is

ρR =
1

k

∑
i

|i〉〈i| (172)

and then we should have

ρ2
R = ρRρR =

1

k2

∑
i

|i〉〈i| (173)

which is different from the path integral result. The mistake comes from the or-
thogonal condition (163). When we define the quantum states |ψi〉 of EOW, we
have to fix the AdS background to do the quantization such that

〈ψi|ψj〉 =

∫
dEρ(E)ΨD,iΨD,j = δij , (174)

where ΨD,i are the energy eigenfunctions. As we have shown in last section, be-
cause other topologies will also contribute to this inner product so we also need
the eigenfunction correspond to the trumpet geometry. The exact inner product
schematically can be written as

〈ψi|ψj〉 = δij + (e−S0)2g−2+1
∑
g

∫
dbVg(b)

∫
dEµ(E, b)ΨD,iΨTr,j(b). (175)
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The details of the quantization of JT gravity with EOW can be found in [11]. Since
we do not know how to do the canonical quantization directly for gravitational
theory and what we have is the Euclidean path integral. One suggestion to resolve
the contradiction is to interpret our naive path integral results as some ensemble
average:

〈ψi|ψj〉 = δij , |ψi|ψj |2 = δij + e−SBH . (176)

This interpretation also suggests that JT gravity theory (with EOW) is dual to
some ensemble averaged theory (for example the matrix model).

Even though the replica wormhole makes a lot of sense but we have not proved
(8). The new entropy formula (8) resembles the RT formula. Indeed we can follow
Lewkowycz and Maldacena’s derivation of RT formula to derive to derive (8) [15].
The basic idea is very straightforward that we should also integrate over the gravity
when we use the replica trick to compute the Renyi entropy:

e−(n−1)S
(n)
A =

∫
Mn

DgDφe−Sgrav [g]−SQFT [g,φ] (177)

then we consider the quotient manifold M̃ = Mn/Zn. In M̃ at the fixed points
which are co-dimension two surfaces ∂A of the quotient Zn there will be conical
singularities. To support these singularities in our gravity theory we can insert
cosmic branes with a tensor T = 1 − n to the fixed points. Therefore the gravity
action should be modified to

Sgrav → Sgrav +
1− n
4G
|∂A|, (178)

such that the area dependence terms manifest.

8 BCFT, brane world and Doubly Holographic

model

The discussion in this section is schematic and conceptual. The details can be found
in [16] and [13]. The key idea is that we assume the matter CFT is also holographic
then the whole system SJT+Smatter can be described by a AdS3 gravity theory with
a dynamical boundary so that we can think of the system is holographically dual
to a 2D BCFT. Then the claim is that the island formula is just the holographic
entanglement entropy of a BCFT [16].

Introducing boundaries to CFT will break conformal symmetries, however it
is possible by choosing proper boundary conditions such that the conformal sym-
metry SO(2, d) is only broken down to SO(2, d − 1). Such boundary conditions
are also described by so-called conformal boundary states or Cardy states. For a
pedagogical introduction of BCFT, see the textbooks [17] and [18]. The AdS/CFT
duality can also be generalized to AdS/BCFT duality: CFT on a manifold A with a
boundary ∂A is dual to Gravity on an asymptotically AdS space M, ∂M = A∪Q
with Q is some codimension-1 surface.
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Figure 12: BCFT/AdS

We can think of that the boundary ∂A extends to the bulk. Let us consider
the simple model AdS3/BCFT2 to “derive” the island formula. Assume that the
BCFT is free and consider an interval A = (a, b). If there is no boundary, to
compute the entanglement entropy with the replica method we basically need to
compute two point function

Tr(ρnA) = 〈Tn(a)Tn(b)〉, (179)

or holographically compute the length of geodesic connection a and b. However
after introducing the boundary which for simplicity we assume it perpendicularly
extends to the bulk, we have to use the method of image (because the boundary
will change the propagator) to compute the two point function such that effectively
we are computing a four point function

〈Tn(−a)Tn(−b)Tn(a)Tn(b)〉, (180)

which can also be computed holographically. Now there are two possible configu-
rations: the RT surface may intersect with the boundary in the bulk or RT surface
does not intersect with the boundary in the bulk. So the RT formula taking account
into the boundary should be

SA = minγAExt

(
Area(γA)

4GN,d=3

)
, ∂γA = ∂A ∪ ∂B ≡ SA∪B, (181)

where the intersection B is the analogue of island. But (181) is not exactly equal to

(8). The missing piece is Area(∂B)
4GN,d=2

which comes from a gravity contribution. This

motivates us to make the boundary to be dynamical. In other words, we should
expect the boundary should be described by a gravitational theory. Gravity with
also gravitational boundary is captured by the Randall-Sundrum (RS) gravity or
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brane gravity. Before introducing the RS brane, let us add more details to the
formulation of AdS/BCFT . The gravity action is given by

S =
1

16πGN

∫
M

√
−g(R− 2Λ) +

1

8πG

∫
Q

√
−h(K − T ), (182)

where the constant T is the tension of the boundary or we can think of we add
some boundary matter field whose stress-energy tensor is Tab = −Thab. The crucial
point is that we allow the boundary metric to fluctuate (equivalently we choose the
Neumann boundary condition on Q). The variation of the boundary metric will
lead to

Kab = (K − T )hab, → K =
d

d− 1
T, (183)

which will fix the position of Q. Let the metric of AdSd+1 to be

ds2 = dρ2 + cosh2 ρ

R
ds2
AdSd

. (184)

If we put Q at ρ = ρ? then the extrinsic curvature on Q can be computed as

Kab =
1

2

∂gab
∂ρ

=
1

R
tanh

ρ

R
hab, (185)

where gab and hab are the metric of AdSd+1 and AdSd, respectively. Therefore
(183) leads to

T =
d− 1

R
tanh

ρ?
R
. (186)

Recall the AdSd+1 boundary is at ρ = −∞.
Even though we kind of have a brane Q with tensor T but there is no gravity on

Q yet. This action (182) is an analogue of JT gravity with EOW brane. To promote
EOW brane to a gravitational brane we can use the RS brane world construction
or add an intrinsic gravity term in the brane action (this scenario is called the
Davli-Gabadadze-Porrati (DGP) gravity).

8.1 Brane world

The main reference is [19]. Let us look at the Hilbert-Einstein action of gravity

S =
1

16πGd+1

∫
M

√
−g(R+

d(d− 1)

L2
) +

1

8πGd+1

∫
∂M

√
−γK, (187)

in which each term is divergent because both the bulk volume and boundary volume
are infinite. So in AdS/CFT calculations, a series of boundary counterterms have
to be added to the action to make the action well defined. Usually the boundary is
chosen to be asymptotical boundary since the bulk metric is determined locally by
the conformal structure of the asymptotical boundary up to very high order. In the
brane world construction, this regulator surface is replaced by the brane located at
some finite radius and the divergent terms become the gravitational action of the
brane theory. The gravitational action is determined through two steps:
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1. Start from AdSd+1 gravity and consider a Fefferman-Graham expansion near
the boundary of an asymptotic AdSd geometry;

2. Integrating the bulk gravity action over the radial direction to the regulator
surface.

For example when d > 2, these divergent terms read

Idi =
1

16πGd+1

∫
ddx
√
−g̃
[

2(d− 1)

L
+

L

2(d− 2)
R̃+

L3

(d− 4)(d− 2)2

(
R̃ijR̃ij −

d

4(d− 1)
R̃2

)
+ . . .

]
(188)

where g̃ is the induced metric on the brane and L is the scale of AdSd. The total
action of the brane is thus S = Idi + Ibrane. The brane action is usually simply
given by

Ibrane = −T
∫
ddx
√
−g̃, (189)

like the one we used in the BCFT5. To illustrate this procedure, let us work out
the detail for case of d = 2. Let us formulate our set-up first. We will study a
holographic system, where the boundary theory is a 2D CFT which couples to a
codimension-1 conformal defect. The bulk description of the system is an AdS3

with a codimension-one brane. The AdS3 metric is given by (184):

ds2 = dρ2 + cosh2(ρ/L)gAdS2
ij dxidxj , (190)

gAdS2
ij dxidxj = L2

[
− cosh2 rdt2 + dr2

]
. (191)

Then we replace the ρ coordinate with a Fefferman-Graham coordinate

z = 2Le−ρ/L, (192)

which leads to

ds2 =
L2

z2

[
dz2 +

(
1 +

z2

4L2

)2

gAdS2
ij dxidxj

]
. (193)

The asymptotic boundary is at z = 0 and z =∞. Assume that the brane cuts off
the AdS3 geometry at z = zB. Given this metric one can compute the Ricci scalar
and extrinsic curvature

R = − 6

L2
, (194)

Kij =
1

2

∂gij
∂n
|zB =

z

2L

∂gij
∂z
|zB , K = −2

(
L

z2
B

−
z2
B

16L3

)
(195)

5while we can also choose something else
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where gij = L2

z2
(1 + z2

4L2 )2gAdS2
ij and K = Kijg

ijAdS2 . Therefore the gravitational
action on the brane is given by

Idi =
1

16πG3

∫
d2x
√
−gAdS2

(∫ ∞
zB

dz
(4L2 + z2)2

16Lz3
(− 6

L2
+

2

L2
)− 4(

L

z2
B

−
z2
B

16L3
)

)
=

1

16πG3

∫
d2x
√
−gAdS2

(
2L

z2
B

+
2

L
log

zB
L
−
z2
B

8L
+ . . .

)
(196)

where we have dropped the contribution from the infinity. Next we rewrite the
expression in terms of the induced metric via the relations√

−g̃ =
L2

z2
B

(1 +
z2
B

4L2
)2
√
−gAdS2 , R̃ = −2

z2
B

L4
(1 +

z2
B

4L2
)−2. (197)

The result is

Idi =
L

16πG3

∫
d2x
√
−g̃

[
2

L2
+

1

2
R̃+

L2

16
R̃2 − 1

2
R̃ log(−L

2R̃

2
)

]
. (198)

The first two terms exactly give rise to the Hilbert-Einstein action on the 2D brane
and the third term can be understood the 1-loop correction. The last term involved
with logarithm is related to the conformal anomaly.

8.2 Doubly holographic model

In this doubly holographic model we will choose the brane action to be

Ibrane = IJT + Ict, (199)

where Ict is included to cancel the first term in (198). Therefore the full induced
the action (including the coupled CFT action) is

S = Idi + Ibrane =
1

16πG2

∫
d2x
√
−g̃
[
Φ̃0R̃+ Φ(R̃+ 2)

]
+ · · ·+ SCFT (g̃, χ),(200)

with the constant value shifted as

Φ̃0 = Φ0 +
G2

G3
, (201)

where we have ignored the higher order R terms. With the RS model, this doubly
holographic model can be straightforwardly generalized to higher dimensional cases.
In [13], the brane is very close to the boundary of AdS3:

g
(3)
ij |bdy =

1

ε2
g

(2)
ij , g

(2)
ij ≡ g̃, (202)

and the brane is also called the Plank brane.
Next we couple this system to an external bath which is described by the same

CFT2 living on a non-gravitational flat spacetime.
The combined system has three alternative descriptions:
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Figure 13: Doubly holographic model

1. 2d-Gravity: A two-dimensional gravity-plus-matter theory living on σy < 0
coupled to a two-dimensional field theory living on σy > 0.

2. 3d-Gravity: A three-dimensional gravity theory in AdS3 with a dynamical
boundary (Plank brane) on part of the space (σy < 0), and with a rigid
boundary on the rest (σy > 0).

3. QM: A two-dimensional CFT on the half-line σy > 0 with some non-conformal
boundary degrees of freedom at σy = 0.

In the third description, we have assumed that the 2D system has (0+1) quantum-
mechanical dual. Then the holographic derivation (in the second description) of
Page curve is the following (Here we follow T. Takayanagi’s description):

Figure 14: Page curve

1. At t = 0, the bath CFT and the 2D gravitational system are disconnected
so the RT surface of interval A in the bath is simple ΓA which ends on the
boundary.

2. Before the Page time, even though the two system start to connect, the dom-
inate RT surface of interval A in the bath is still ΓA which ends on the
boundary.
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3. After the Page time, the dominate RT surface is the one ending on the Plank
brane. So there is a phase transition.

We finish the section with some comments:

1. It is kind of artificial to to choose Ibrane = IJT +Ict, it would be nice to derive
the double holographic model more natually from RS model.

2. We should notice that the BCFT holographic entanglement entropy can ex-
plain part of the island formula. Even though we argue that the missing piece
can be added back by considering brane world. But this is still a proposal not
a proof. We just replace the island proposal with the a BCFT+braneworld
proposal.

3. We have shown that the island exists in the simple 2D model. Higher dimen-
sional islands are also found numerically for example in [20].

4. In our simple 2D double sided black hole example, the new QES is outside the
horizon. But if decouple the black hole from the bath, the decoupling process
will inevitably produce energy flux into the black hole so that the horizon will
move outward. The QES then will lie behind the horizon as the situation in
the one-sided black hole model [12]. In general, QES should be behind the
horizon due to quantum focusing conjecture [21].

5. We only derive the Page curve with island formula in the AdS+non-gravitational
bath system. Optimistically we expect that the Page curve of black hole in
asymptotically flat spacetime can be derived in the same way: there is islands
appearing at the Page time, for example [22]6. The idea is straightforward:
we can choose a cut-off surface which is way from the black hole horizon to
separate the spacetime into two regions: the black hole region and the flat
bath region. In the flat bath region gravity may be ignored. However this
may be not correct. In [24], it was shown the non-gravitational bath is cru-
cial. The bath is not just an auxiliary spectator but it actually influences
the physics. If we make the bath gravitating, the Page curve will disappear.
So it implies that we should not ignore the gravity in the asymptotically flat
region just because the gravity is weak far away from the black hole. At least
it needs more careful justification.

9 Baby Universe

We have derived the Page curve with the island formula but have we resolved
information paradox? For example, we can ask ourselves the following questions:

1. Is Hawking radiation thermal or pure? Both Hawking’s calculation and the
island formula only use semi-classical approximation why the results are dif-
ferent? The island formula is just a trick to produce Page curve or it reflects
real life physics?

6but there seems also a counterexample [23]
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2. If we can collect all the Hawking radiation of an evaporated black hole how
to know the state of Hawking radiation by doing local measurements?

3. What is the difference between replica wormholes and spacetime wormholes.

4. . . .

If we believe black hole unitarity of course Hawking radiation is pure. But cur-
rently we do not know how to compute the exact density matrix of the Hawking
radiation in a quantum gravity theory. Hawking’s semi-classical calculation only
gives some coarse grained von Neumann entropy while by taking into account new
saddles the island formula gives the fine grained entropy which does follow the Page
curve. These new saddles can be understood as replica wormholes. The physics
we learn from island formula or replica wormhole is that in the Euclidean path
integral we also need to consider saddles which correspond to (complex) singular
geometry because even though these semi-classical solutions are singular but they
give finite contribution to the action just like other solitons or instantons. Have
some asymptotic observer collect all the Hawking radiation of a black hole, we only
have one copy of the density matrix ρ but no measurement on a single copy can
help us to distinguish a mixed state from an unknown pure state. Therefore the
asymptotic observer needs form and evaporate a large number n copies of black
holes which are largely separately in spacetime, and make joint measurements on
the resulting n copies of Hawking radiation. This set-up may be interpreted as a
physical version of the replica trick. The crucial difference is that now each replica
is a physical system.

Hawking’s prediction of the density matrix is ρHawking which is thermal. To
prove or disprove this prediction the experimenter can perform a swap test. For
a simple example of n = 2, the acts of the swap operator S is to exchange two
replicas: S|ψ1〉 ⊗ ψ2〉 = |ψ2〉 ⊗ ψ1〉 such that expectation value of this operator is

〈S〉 = Tr(Sρ⊗ ρ) = Tr(ρ2), (203)

which is as known as the purity of ρ. More generally, on n replica we can measure
the expectation value of the cyclic permutation operator Uτ : Tr(Uτρ

(n)) or the
so-called swap entropies

Sswapn (ρ(n)) ≡ − 1

n− 1
log Tr(Uτρ

(n)), (204)

which is the physical quantity the experimenter can measure. So the experimenter
should ask Hawking to provide his prediction of (204) instead of naively considering
Sswapn (ρ⊗nHawking). Hawking’s theoretical prediction will be a path integral calcula-
tion of (204). To compute (204) even in the semi-classical level is very complicated
because we need to find all the possible saddles. Our approach is to focus on the
saddles which we have known: Hawking saddles, Polchinski-Strominger saddles and
replica wormhole saddles. The main reference is [25]7.

7For an overview of [25], see [26].
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9.1 Hawking saddles

This is the set-up of Hawking’ calculation of ρHawking. We will use a in-in formalism
to compute the density matrix so we need two copies of black hole geometry for
ket and bra states, see Fig.(9.1)

Figure 15: Hawking saddle I

First we perform a Euclidean path integral over the half-infinite flat space time
to prepare the vacuum state at J− then perform a Lorentzian path integral forward
with boundary conditions at J+ are 〈i| and |j〉. The internal surfaces Σint are
identified to denote a trace over the states in the black hole. The result is the
density matrix ρij . Similarly we can compute the density matrix ρu associated
with partial Hawking radiation as shown in Fig.(9.1)

Figure 16: Hawking saddle II

9.2 Polchinski-Strominger saddles

Let us consider the geometry of the whole evaporation process shown in Fig[INSERT
FIGURE] and assume
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1. In the full geometry Fig. (1),

Figure 17: PS saddle

the spacetime is empty near future timelike infinity i+.

2. For any Cauchy surface Σint of the black hole interior, we may treat J +∪Σint

as a (disconnected) Cauchy surface for the full spacetime.

We have stressed that Σint and J + are disconnected so after the black hole evap-
oration this part Σint is detached from the original universe and we will think Σint

belongs so-called baby universe. Moreover there is no way to distinguish different
Σint from different copies in computing ρ(n) so they should be indistinguishable
and satisfy the Bose statistics. Therefore are n! possible saddles which are related
by permutations and components of the density matrix is given by

〈i1, . . . , in|ρ(n)|j1, . . . , jn〉 =
∑

π∈Sym(n)

〈i1|ρHawking|jπ(1)〉 . . . 〈in|ρHawking|jπ(n)〉.(205)

The Fig.(9.2)
shows the two saddles for n = 2 case. Taking the new saddles into account the

purity is given by

Tr(S(Ju)ρ(2)) = Tr(S(Ju)ρ⊗2
Hawking) + Tr(S(Ju)S(J +)ρ⊗2

Hawking). (206)

Since Ju + Jū = J + then S(Ju)S(J +) = S(Ju). Thus the purity is equal to

Sswap2 (u) ∼ min{SHawking2 , S̄Hawking2 }, (207)

where we have approximate the function as a minimum of the two terms because we
expect one of them is large. So the path integral calculation will produce the Page
curve! It implies that the n copies of density matrix are not uncorrelated as we
expect. The correlation is mediated through the baby universe. Alternatively we
can think of that different copies of black holes are actually connected by spacetime
wormholes. Of course considering wormholes will violate the cluster decomposition
and it also causes other problems. For example, as we shown in the JT gravity
case, it will change the inner product between states. The Polchinski-Strominger
baby universe proposal can not be accepted mainly due to following challenges:

39



Figure 18: PS saddle

1. The PS saddle geometries include the end point of the evaporation (which is
a point on Σint) where we lose the semi-classical control.

2. The Bekenstein-Hawking entropy SBH bound is violated. Because the SHawking2 +

S̄Hawking2 = SHawking(∞) which exceeds the bound and

S̄Hawking2 (u)

SBH(u)
=
SHawking(∞)

SBH(0)
> 1 (208)

3. It violates the causality. Because the quantity S̄Hawking2 (u) depends on the
entire future of the black hole but some how we can perform the swap ex-
periment to obtain it at time u. (Here we have assumed that when we do
the swap test, the measurement will not change the semi-classical geometry.
Basically we do not consider the Schrodinger’s cat scenerio.)

9.3 Replica saddles

We can think of that replica saddles are upgraded Polchinski-Strominger saddles.
The key point is that we choose a new Cauchy surface Ju ∪ Σext ∪ I instead
of the disconnected J + ∪ Σint so that on this new Cauchy surface semi-classical
description is always applicable. And the baby universe region Σint is replaced by
the island I. I and Σext meets at a codimension-2 boundary ∂I = γ which can
be thought of as a gate to the baby universe. Different copies of ∂I can be sewn
together along γ. In the sewn geometry, there will a conical singularity at γ so the
γ codimension-2 boundary will be the QES as we expect. The Fig. (9.3)
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Figure 19: Replica saddle

shows the two saddles for n = 2 case. With the new saddles the purity becomes

Sswap2 (u) ∼ min{SHawking2 , SBH}, (209)

where we have used the fact γ is very close the horizon.

9.4 Hilbert space of baby universes and ensembles

We have shown how the replica wormholes and baby universes can introduce cor-
relations between replicas from the path integral perspective. Now let us describe
the Hilbert space interpretation of the correlations. We will focus on the case of
PS wormhole since the generalization to the case of replica wormhole is straightfor-
ward. A single PS ket spacetime with boundary conditions imposed on J + and
Σint computes the wavefunction ψai of a state in HJ + ⊗Hint:

|ψ〉 =
∑
i,a

ψai|i〉J + ⊗ |a〉int. (210)

Identifying the Σint of the ket spacetime and bra spacetime gives the Hawking
density matrix (one may find this is exactly the same calculation as we did in
section (7))

ρHawking =
∑
i,j,a,b

ψ̄bjψai〈b|a〉int(|i〉〈j|)J + . (211)

If we choose an orthonormal basis 〈b|a〉int = δab then we have

(ρHawking)ij =
∑
a

ψ̄ajψai ≡ (ψj , ψi). (212)
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Now define the Hilbert space the baby universe as

⊕∞n=0SymnHint ≡ HBU . (213)

Then the elements of the density matrix of ρ(n) can be written as

〈i1, . . . , in|ρ(n)|j1, . . . , jn〉 =
∑
a,b

ψa1i1ψ̄b1j1 . . . ψaninψ̄bnjn〈b1, . . . , bn|a1, . . . , an〉BU .(214)

with

〈b1, . . . , bn|a1, . . . , an〉BU =
∑

π∈Sym

δa1bπ(1) . . . δanbπ(n) . (215)

The definition (213) can be understood as the Fock space then we can associate
the states |a〉 and 〈b| with creation and annihilation operators

|a1, . . . , an, b̄1, . . . , b̄n〉 = A†a1 . . . A
†
anB

†
b1
. . . B†bn |HH〉, (216)

[Aa, A
†
a] = [Ba, B

†
a] = δab, Aa|HH〉 = Ba|HH〉 = 0, (217)

where Aa(Ba) and A†a(B
†
a) annihilate and create a (anti) baby universe in the state

a(b) and |HH〉 is the vacuum or the zero-universe state.
Alternatively we can understand the baby universe states in the following way.

As before we think of |HH〉 to denote a closed surface state (or the no boundary
state). The boundary operators can be defined as

α̂a = A†a +Ba, (218)

thus

〈b1, . . . , bn|a1, . . . , an〉BU = 〈αa1 , . . . αanᾱb1 . . . ᾱbn〉BU (219)

〈αa1 , . . . αanᾱb1 . . . ᾱbn〉BU = 〈HH|α†b1 . . . αan |HH〉 (220)

The first identity (219) means that the inner product can be understood as an
ensemble average of random variables α and ᾱ satisfying the Bose statistics

〈F [α, ᾱ]〉BU =

∫ ∏
a

dαadᾱae
−

∑
a αaᾱaF [α, ᾱ]. (221)

The second identity (220) means that the ensemble average can also be understood
as correlation functions of a quantum gravity theory. With this representation, the
elements of the density matrix can be written as

〈i1, . . . , in|ρ(n)|j1, . . . , jn〉 = 〈Ψ̄j1 . . . Ψ̄jnΨi1 . . .Ψin〉BU , (222)

Ψi =
∑
a

αaψai. (223)

Thus Ψ̂i =
∑

a α̂aψai can also be treated as a boundary-inserting operator which is
specified by boundary conditions of quantum gravity path integral. Since the order
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of boundary condition is relevant for the path integral, these operators commute
to each other i.e. [α, α†] = [α, α] = [α†, α†] = 0. This is also the main reason
we introduce B and B† in our definition even though they do not appear in our
discussion (the inner product is always involved with baby universe not anti- baby
universe states.). As a consequence, they can be diagonalized at the same time
and the common eigenfunction is usually called the α–state (superselection sector).
Fixing each αa to some value in (222) or equivalently replacing |HH〉 with some
α–state, the density matrix will factorize

〈i1, . . . , in|ρ(n)|j1, . . . , jn〉 →fix α Ψα
i1Ψ̄α

j1 . . .Ψ
α
inΨ̄α

jn (224)

which implies the Hawking radiation |Ψα〉 ∈ HJ + is a pure state. As a result, we
can think of the Hawking radiation is in a superposition state of different supers-
election sector but our theory can not give a specific prediction for |Ψα〉. Instead,
it only gives a result after a probabilistic average for example:

ρHawking =

∫
dµ(α)|Ψα〉〈Ψα|. (225)

In the end, let us go back to the JT gravity example. The full state is (164)

|Ψ〉 =
∑
i

|i〉 ⊗ |ψi〉 =
∑
i,a

ψai |i〉 ⊗ |a〉 (226)

with the inner product (175)

〈ψi|ψj〉 = δij +
∑
n

λnR
(n)
ij , λ = e−S0 . (227)

Assume that we can diagonalize the inner product and find the new orthonormal
basis |a〉 =

∑
i ψ

a
i |ψi〉. Then we can define α̂ operator as before

α̂a = (A†a +Ba) =
∑
i

(ψai ψ̂
†
i + ψai

ˆ̄ψi), (228)

where ˆ̄ψi corresponds to the anti operator. Therefore we can identity the boundary
operator of JT gravity as

(ψi, ψj) = (ψ̂i + ˆ̄ψ†i )(ψ̂
†
j + ˆ̄ψj) =

∑
a,b

(ψ̄ai )−1(ψbj)
−1α̂†aα̂b. (229)

A SYK model

This section is a review of SYK model. Hopefully the review can explain the relation
between SYK and JT gravity. The other goal of this section is to understand
some novel properties of SYK model including the solvability, emergent conformal
symmetry and reparameterization invariance and the nature of being an ensemble
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theory. All these properties make SYK to be an interesting toy model for studying
strong coupling systems with many degrees of freedom.

The model
SYK model is quantum mechanics of N = 2K � 1 Majorana fermions with

all-to-all couplings:

ISY K =

∫
dτ

1

2

N∑
i=1

χi(τ)χ̇i(τ)− 1

4!

N∑
i,j,k,l=1

Jijklχi(τ)χj(τ)χk(τ)χl(τ)

 , (230)

where τ is the Euclidean time and χi are Hermitian operators and obey the anti-
commutation relations:

{χi, χj} = δij , i, j = 1, . . . , N. (231)

To parameterize this algebra we can think that each χi is a 2K × 2K matrix. Via
the Legendre transformation the Hamiltonian is

H =
1

4!

N∑
i,j,k,l=1

Jijkl χi(τ)χj(τ)χk(τ)χl(τ), (232)

which is also a 2K × 2K matrix. The coupling Jijkl are not constants but follow
the Gaussian distribution with mean and variance

〈Jijkl〉 = 0, 〈J2
ijkl〉 =

3!J2

N3
. (233)

By diagonalizing this matrix one can find the spectrum of the model. The coupling
Jijkl is relevant so the theory is expected to asymptotically free at very large energy.
In this large energy limit, the Hamiltonian is simple vanishing. The propagator or
the two-point function is

Gfij = 〈Tχ(τ)χ(0)〉 = 〈χi(τ)χj(0)〉θ(τ)− 〈χj(0)χi(τ)〉θ(−τ) =
1

2
δijsgnτ. (234)

We can also derive this propagator from the standard rule

Gfij = δij
1

∂τ
, → Gf (ω) = − 1

iω
. (235)

Higher point correlation functions are given by Wick contraction. Use this free
propagator we can then compute corrections due to the interaction perturbatively

G(τ) = 〈T [χn(τ)χm(0) +
1

4!

∑
ijkl

Jijkl

∫
dt′χn(τ)χm(0)χ′iχ

′
jχ
′
kχ
′
l (236)

+
1

2

1

(4!)2

∑
ijkl,pqrs

JijklJpqrs

∫
dt′
∫
dt′′χn(τ)χm(0)χ′iχ

′
jχ
′
kχ
′
lχ
′′
pχ
′′
qχ
′′
rχ
′′
s +O(J3)]〉.
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Doing the ensemble average by the Wick contraction rule

〈JijklJpqrs〉 =
3!J2

N3

∑
σ

sgn(σ)δiσpδjσqδkσrδlσs. (237)

in the large N limit, one can find that the leading contribution comes from the
contraction ∑

klm

〈JiklmJjklm〉 = 3!J2δij +O(
1

N
), (238)

which correspond to the melon diagrams. Then the propagator in the large N limit
is given by the summation of the geometric series

G = Gf +GfΣGf +GfΣGfΣGf + . . .

= [(Gf )−1 − Σ]−1 = [∂τ − Σ]−1, Σ = J2G3. (239)

The Fourier transformation (where we used the translation symmetry) of the first
equation is

1

G(ω)
= −iω − Σ(ω). (240)

These equations (239) and (240) are also known as the Dyson-Schwinger equation
and they can be solved numerically by iterations so in this sense the SYK model
is solvable at large N. This is the same solvability of the vector model where the
only leading diagram is the bubble diagram.

There is another distinct solvability which is absent in the vector model. Let
us consider the IR property, the same as the strong coupling (recall J relevant), of
the solution. J is only scale of the model, so the IR limit means the frequencies
ω � J (or for a thermal solution means βJ � 1). In this limit, the term iω drops.
Then the DS equation is approximated as∫

dτ ′G(τ, τ ′)Σ(τ ′, τ ′′) = −δ(τ − τ ′′), Σ(τ, τ ′) = J2|G(τ, τ ′)|3. (241)

They are invariant under reparametrizations τ → φ(τ) if the fields transform as

G(τ, τ ′) → [φ′(τ)φ′(τ ′)]1/4G(φ(τ), φ(τ ′)), (242)

Σ(τ, τ ′) → [φ′(τ)φ′(τ ′)]3/4Σ(φ(τ), φ(τ ′)). (243)

They can be thought of as two primary point functions of a conformal field theory.
So a possible solution is

Gc(τ) =
b

|τ |2∆
sgn(τ), ∆ =

1

4
(244)
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and the prefactor b can be fixed by substituting this ansatz to the equation. One
can solve

b4 =
1

πJ2
(
1

2
− 1

4
) tan

π

4
. (245)

Other solutions are obtained by reparametrizations of this solution:

Gc(τ1, τ2) = b sgn(τ)
φ′(τ1)∆φ′(τ2)∆

|φ(τ1)− φ(τ2)|2∆
. (246)

For example the two point function on the thermal circle τ ∼ τ + β is given by
applying the transformation φ(τ) = tan πτ

β . The result is

Gc(τ) = b(
π

β sin πτ
β

)1/2sgn(τ). (247)

However there is a degeneracy in (246). When φ is a transformation in SL(2, R),
the Mobius transformation, then (246) still gives (244). So the space of solution is

DiffS1/SL(2, R). (248)

Choosing one of them, say (244), the reparametrization invariance is spon-
taneously broken down to SL(2, R). It implies8 that at the IR fixed point all
Goldstone modes of SYK can be described by a one-dimensional CFT. Let us get
some understanding about these Goldstone modes from two examples. The first
example is the asymptotic symmetry of AdS3 space. After choosing the AdS3

space, the asymptotic symmetry is broken down to the global conformal symmetry.
The resulted Goldstone modes are described by the coadjoint orbit of the Virasoro
group

DiffS1/SL(2, R)⊕DiffS1/SL(2, R). (249)

Other other example is the relativistic particle whose action is

S =
1

2

∫
dτ e(τ)

[
e−2(τ)ẋ · ẋ−m2

]
. (250)

The action is also invariant under representation of the worldline provided

e′(τ ′)dτ ′ = e(τ)dτ. (251)

The propagator is given by the path integral

〈x′|x〉 =

∫ x(t)=x′

x(0)=x
DeDx exp

[
− i

2

∫ t

0
(
1

e
ẋ2 − em2)dτ

]
(252)

8This perspective is examined for example in [?].
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Because of the reparameterization invariance this integral will be divergent. Here
we should treat reparameterization invariance as a gauge symmetry of the relativis-
tic particle do a gauge fixing. By the gauge fixing we can remove all the modes
except for the zero modes,i.e.

L =

∫ t

0
dτe/t → e = L. (253)

Then the gauge-fixed path integral is

〈x′|x〉 = N̂

∫ ∞
0

dL

∫ x(1)=x′

x(0)=x
Dx exp

[
−1

2

∫ 1

0
(

1

L
ẋ2 − Lm2)dτ

]
, (254)

where we have added the normalization factor, rescaled t = 1 and rotate to the
Euclidean time τ → −iτ . To evaluate this path integral we can expand it around
the classical path

x(τ) = x+ (x′ − x)τ + δx. (255)

The measure for the fluctuations is

||δx||2 =

∫ 1

0
dτe(δx)2 = L

∫ 1

0
dτ(δx)2 (256)

such that

Dx ∼
∏
τ

√
Ldδx(τ). (257)

Then we arrived at the final expression

〈x|x′〉 = N̂

∫ ∞
0

dL

∫ ∏√
Ldδx(τ)e−(x′−x)2/2L−m2L/2e−(1/2L)

∫ 1
0 dτ(δẋ)2

= N̂

∫ ∞
0

dL e−(x′−x)2/2L−m2L/2[det(−∂
2
τ

L2
)]−D/2

= N̂ ′
∫ ∞

0
dL e−(x′−x)2/2L−m2L/2L−D/2. (258)

In the second line we have absorbed the term which is divergent and needs regu-
larization into the normalization since it is a only a constant factor. The L−D/2

comes from

det(1/L2) =
∏

L−2ζ(0) = L. (259)

We may try to perform a similar calculation for the SYK model in the low
energy conformal limit. First we observe that these equations of motion (241) can
de derived from the effective action

Seffc = −1

2

∫ ∫
log(−Σ)δ(τ − τ ′) +

1

2

∫ ∫
(ΣG− 1

4
G4). (260)
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Similarly, because of the reparameterization invariance the path integral will be di-
vergent. Let us see this divergence more carefully from another interesting quantity
the four point function of fermions:

1

N2

∑
ij

〈χi(τ1)χj(τ2)χk(τ3)χl(τ4)〉 =

∫
dΣdGe−S

eff
c G(τ1, τ2)G(τ3, τ4). (261)

Let us analyze the leading 1/N piece of the left-hand side:

1

N2

N∑
i,j=1

〈χi(τ1)χj(τ2)χk(τ3)χl(τ4)〉 = G(τ12)G(τ34) +
1

N
F(τ1, τ2, τ3, τ4) + . . .(262)

the first term is the disconnected piece. To compute F , the diagrams which are
needed to summed are the ladder diagrams with any number of rungs. The first
diagram, F0, is just a product of propagotors

F0(τ1 . . . τ4) = −Gτ12Gτ24 +Gτ14Gτ23 . (263)

The next diagram is the one-rung ladder:

F1 = 3J2

∫
dτdτ ′

[
G(τ1 − τ)G(τ2 − τ ′)G(τ − τ ′)2G(τ − τ3)G(τ ′ − τ4)− (τ3 ↔ τ4)

]
.(264)

The standard technique for computing the ladder diagram is to use the diagram
building kernal to compute them recursively

Fn+1(τ1, τ2, τ3, τ4) =

∫
dτdτ ′K(τ1, τ2; τ3, τ4)Fn(τ, τ ′, τ3, τ4), (265)

where the kernel is

K(τ1, τ2; τ3, τ4) = −3J2Gτ13Gτ24G
2
τ34 . (266)

The sum of all ladder diagrams is then a geometric series

F =
∞∑
n=0

KnF0 =
1

1−K
F0. (267)

Therefore we need to diagonalize K. This is doable due to that K commutes with
the conformal symmetry, so the its eigenfunctions are the conformal blocks. Here
we summarize the procedures and results:

1. F and Fn are only functions of the cross ratio u = τ12τ34
τ13τ24

.

2. The eigenfunctions are particular hypergeometric functions Ψh(u) related to
the conformal blocks of weight h.

3. The complete set of h are h = 1
2 + is and h = 2, 4, 6, 8, . . .
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4. The four point function then is given by

F(u) =
∑
h

Ψh(u)
1

1− kc(h)

〈Ψh,F0〉
〈Ψh,Ψh〉

, (268)

where kc(h) are the eigenvalues of the kernelK as a function of h. In particular
kc(2) = 1, which leads to the divergence which we expected. So h = 2 mode
is the reparameterization mode and we expect when the model is moved away
from the IR fixed point, the leading non-conformal contribution is determined
by the first order shift in the h = 2 eigenvalues of the kernel.

To study the leading non-conformal contribution let us restore iω term and look
at the full effective action

Seff

N
= −1

2

∫ ∫
log(−∂τ − Σ)δ(τ − τ ′) +

1

2

∫ ∫
(ΣG− 1

4
G4), (269)

which can separated into the conformally-invariant and non-invariant parts SCFT +
SS

SCFT
N

= −1

2
log det(−Σ) +

1

2

∫ ∫
(ΣG− 1

4
G4),

Ss
N

= −1

2

∫ ∫
G−1
f G(τ, τ ′)δ(τ − τ ′), G−1

f = ∂τ . (270)

after a shift Σ → Σ − G−1
f δ(τ − τ ′). The non-conformal term Ss may be thought

of as a “boundary” term which breaks the reparameterization invariance explicitly.
[Probably there is a better way to derive Schwarzian.] To characterize the breaking,
recall the entire space of the conformal solutions are

G(τ1, τ2) = b sgn(τ)
φ′(τ1)∆φ′(τ2)∆

|φ(τ1)− φ(τ2)|2∆
. (271)

So to characterize different symmetry breakings we need to specify the “boundary”
behaviors

lim
τ1→τ2

G(τ1, τ2). (272)

Here we make the simplest choice by the Tylor expanding with respect to τ12 =
τ1 − τ2 around the center point τ+ = (τ1 + τ2)/2:

G(τ1, τ2) ≈ bsgn(τ12)

|τ12|2∆
(1 +

∆

6
τ2

12Sch(φ(τ+)), τ+) (273)

which leads to action

Ss
N

= − C

2J

∫
dτ Sch[f(τ), τ ]. (274)

The constant coefficient C will be fixed numerally. The field f(τ) is referred to
as the reparameterization mode or the soft mode and it is the Nambu-Goldstone
mode.
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A.1 O(N) Vector model

The Lagrangian is

L =
i

2
ψ̄i∂ψi +

1

4
g(ψ̄iψi)

2. (275)

Introducing the auxiliary field σ(x) the Lagrangian can be rewritten as

L =
i

2
ψ̄i∂ψi −

1

4g
σ2 +

1

2
σψ̄ψ. (276)

The equation of motion of the auxiliary field gives

σ = gψ̄ψ. (277)

Integrating out the fermions leads to the effective action

Iσ
N

=
1

2
log det(i∂ + σ)− 1

4gN

∫
σ2. (278)

Therefore in the large N limit, the first term dominates which corresponds to
summing the one loop fermion diagrams at zero momentum.

B Thermofield double formalism

The thermofield double formalism is a trick to treat the thermal mixed state ρ =
e−βH as a pure state in a bigger system. We consider a new QFT which is two
copies of original QFT. The states in this doubled QFT are the tensor products of
states of the two QFTs. The thermofield double state is defined as

|TFD〉 =
1√
Z(β)

∑
n

e−βEn |n〉1|n〉2. (279)

The reduced density matrix of system 1 is then

ρ1 = tr2ρTFD =
∑
n

eβEn |n〉 (280)

, so if we restrict system 1 we obtain a thermal state as we want. Now we see how
to prepare this state by Euclidean path integral. We consider the a ”cylinder” Σ:

Σ = Intervalβ/2 × Sd−1, (281)

the interval is the length of the ”cylinder”. To confirm this state is really a ther-
mofield double, let us compute the transition amplitude

〈ϕ1|〈ϕ2|TFD〉 = 〈ϕ1|e−βH/2|ϕ?2〉 =
∑
n

e−βEn/2〈ϕ1|n〉〈ϕ2|n〉 (282)
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up to some factor and reparametrization which is the desired matrix elements of
the thermofield double state. Assume the QFT has a bulk gravity dual in the sense

Zgravity[∂M = Σ] = ZQFT [Σ], (283)

then we can prepare this thermofield double state by performing a path integral
on M in the gravity theory. To do this we first need to find a Euclidean gravity
solution with the boundary Σ. A obvious one is the half of the Euclidean black
hole with Euclidean time range tE ∈ [0, β].

C Warped products

Consider the warped product geometry

ds2 = ds2
(x) + e2w(x)ds2

(y),

= gαβdx
αdxβ + e2w(x)gmndy

mdyn, (284)

and let k be the dimension of the y space The Ricci scalar factorizes as

R = Rx + e−2wRy − 2k∇2
xw − k(k + 1)gαβ∂αw∂βw. (285)
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